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Question 1.

Given a smooth manifold M , a vector field Y ∶M → TM on M , and a coordinate chart (U,x), the vector
field Y is smooth on U if and only if the component functions with respect to this chart is smooth (Spivak
chapter 5), i.e. for any p ∈ U if we express

Y = ∑
i

Y i(p) ∂

∂xi
∣
p

then Y is smooth on U if and only if the Y i are smooth.

Consider M = Rn, we see that there is a globally defined smooth coordinate chart (Rn, (xi)), the standard
smooth structure. Define the vector fields Vi to be ∂

∂xi
, then {Vi}i=1,...,n is linearly independent (because

{ ∂
∂xi

}i=1,...,n is linearly independent), and the remark at the beginning of the answer shows that {Vi} generates
the space of C∞ vector fields over Rn as a C∞(M)-module. Thus the space of C∞ vector fields over Rn is
a free C∞(M)-module.

On the other hand, suppose M = S2. Suppose on the contrary that C∞ vector fields on S2 has a linearly
independent generating set as a C∞(S2) module. Since S2 is locally diffeomorphic to R2, we see that the
linearly independent generating set can only have exactly two elements. Now let V1, V2 be two linearly
independent C∞ vector fields on S2. Since the hairy ball theorem tells us that V1∣p (or V2) must be 0 for
some p ∈ S2, we see that V1 and V2 cannot possibly generate the whole C∞ vector fields on S2. Thus we
have a contradiction, and we conclude that the C∞ vector fields on S2 is not a free C∞(S2)-module.

Question 2.

Let M be a smooth orientable compact connected n-dimensional manifold and ω an (n − 1)-form on M .
First of all, even though it is not in the problem’s original assumption on M , I think that M cannot have
any boundary, because suppose M = [1,2] ⊂ R an embedded manifold with boundary and ω = x ∈ Ω0(M) =
C∞(M), then dω is never 0 for any p ∈ [1,2]. Thus the problem is not true if M has boundary.

Thus let M be a smooth orientable compact connected n-dimensional manifold without boundary and ω
an (n−1)-form on M . Now by Stokes Theorem, we see that ∫M dω = ∫∂M ω = 0 since ∂M = ∅. Now since dω
is smooth and ∫M dω = 0, we see that if dω(p) is not the zero map for all p ∈M , in coordinates this means
that dω(p) = f(p)dx1 ∧ ... ∧ dxn is not zero the zero map for all p (which means f(p) is never zero), and so
by smoothness of dω (which is equivalent to smoothness of f) it must follow that f(p) > 0 or f(p) < 0 for all
p ∈M . However, this implies that ∫M dω > 0 or ∫M dω < 0, which is a contradiction. Thus we comclude that
dω(p) must be the zero map for some p ∈M .

Question 7-8.

(a) Define φ1 = (β1ψ1 + β3ψ3 + ...+ βnψn) and φ2 = (γ2ψ2 + ...+ γnψn) to be linearly independent vectors
satisfying the system of equations β1γj = α1j for j ≥ 2 and βiγ2 = −αi2 for i ≥ 3 (such vectors exist for n ≥ 3
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because there are at least more variables than unknowns, and the case for n ≤ 3 is proved in question 7-6 in
the last problem set). Then we see that ω −φ1 ∧φ2 = ∑i<j αijψi ∧ψj − (β1ψ1 ∧φ2 − γ2ψ2 ∧ (φ1 − β1ψ1) + η) =
∑i<j,i,j∉{1,2} αijψi ∧ ψj + η where η is the part of φ1 ∧ φ2 that does not involve ψ1, ψ2, and hence letting
ω′ = ∑i<j,i,j∉{1,2} αijψi ∧ ψj + η we see that ω = φ1 ∧ φ2 + ω′ where ω′ does not involve ψ1 or ψ2. Now using
induction on n and the ”extending to a basis” theorem in linear algebra, we conclude that there is a basis
φ1, ..., φn of V ∗ such that ω = (φ1 ∧ φ2) + ... + (φ2r−1 ∧ φ2r) for some r.

(b) Suppose we write ω = (φ1 ∧φ2)+ ...+(φ2r−1 ∧φ2r) as constructed in part (a). Now consider ω∧ ...∧ω
for r-times, we see that when we expand out the whole expression, the terms in ω∧r that do not involve the
same φi (i.e. the only nonzero terms) are that of the form (φ1 ∧ φ2 ∧ ...∧ φ2r−1 ∧ φ2r). To make this precise,
write ω = (φ1 ∧ φ2) + ... + (φ2r−1 ∧ φ2r) = A1 + ... +Ar, then

ω∧r = ∑
(p1,...,pr)∈{1,...,r}×r

Ap1 ∧ ... ∧Apr

and the only terms in the above summand that is nonzero is when (p1, ..., pr) has no repeated entry (because
if for some term pi = pj then that term will have repeated φk for some k, and hence the wedge product will
be 0), and so the above simplifies to

ω∧r = ∑
σ∈Sr

Aσ(1) ∧ ... ∧Aσ(r) = r! ⋅A1 ∧ ... ∧Ar = r! ⋅ φ1 ∧ φ2 ∧ ... ∧ φ2r−1 ∧ φ2r

which is non-zero and decomposible.

On the other hand, consider ω∧r+1, we have

ω∧r+1 = ∑
(p1,...,pr+1)∈{1,...,r}×r+1

Ap1 ∧ ... ∧Apr+1

and since we are choosing r + 1 things from the set {1, ..., r} of r elements, the expression (p1, ..., pr+1) must
have repeated pi in the entries, and hence Ap1 ∧ ... ∧Apr+1 = 0 because it will have repeated φi in it. Thus
we see that all the summand is actually zero, and hence

ω∧r+1 = ∑
(p1,...,pr+1)∈{1,...,r}×r+1

Ap1 ∧ ... ∧Apr+1 = 0

Thus the number r is well-defined.

Question 4.

Let the vi defined in the problem be denoted as vi = ∑nj=1 γijej where ej is the standard basis for Rn. We
let G ∶ [0, ε]n → Pε be the map taking (x1, ..., xn) ↦ (γ11x1 + ... + γ1nxn, ..., γn1x1 + ... + γnnxn). Note that in
euclidean space, from multivariable calculus we know that there is a ”mean value” property for integrals of
continuous functions, i.e.

∫
S
f(x)dx = f(c)∫

S
1dx

where x = (x1, ..., xn) and S a measurable set and c ∈ S. So now it follows

∫
∂Pε

ω = ∫
Pε
dω

= ∫
[0,ε]n

G∗dω

= (G∗dω)∣c (
∂

∂x1
∣
c

, ...,
∂

∂xn
∣
c

)∫
[0,ε]n

1dx

= dω∣G(c) (G∗

∂

∂x1
∣
c

, ...,G∗

∂

∂xn
∣
c

) εn
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where c ∈ [0, ε]n. Thus we see that

lim
ε→0

1

εn
∫
∂Pε

ω = lim
ε→0

1

εn
dω∣G(c) (G∗

∂

∂x1
∣
c

, ...,G∗

∂

∂xn
∣
c

) εn

= lim
ε→0

dω∣G(c) (G∗

∂

∂x1
∣
c

, ...,G∗

∂

∂xn
∣
c

)

= lim
ε→0

dω∣G(c)

⎛
⎝
n

∑
j=1

γ1j
∂

∂xj
∣
G(c)

, ...,
n

∑
j=1

γnj
∂

∂xj
∣
G(c)

⎞
⎠

= dω∣G(0)

⎛
⎝
n

∑
j=1

γ1j
∂

∂xj
∣
G(0)

, ...,
n

∑
j=1

γnj
∂

∂xj
∣
G(0)

⎞
⎠

= dω∣0(v1, ..., vn)

Question 7-18.

(a) Suppose ω is a k-form, then this is equivalent as saying ωp(X1, ..., Y, ..., Y, ...,Xk) = 0∀p, i.e. that for
all p, ω is zero whenever any two of its arguments is the same. Now (LXω)p = limh→0

1
h
[(φ∗hω)p − ωp],

so (LXω)p(X1, ..., Y, ..., Y, ...,Xk) = limh→0
1
h
[(φ∗hω)p(X1, ..., Y, ..., Y, ...,Xk) − ωp(X1, ..., Y, ..., Y, ...,Xk)] =

limh→0
1
h
[0 − 0] = 0, and hence LXω is also a k-form.

(b)

LX(ω ∧ η) = LX ((k + l)!
k!l!

Alt(ω ⊗ η)) = (k + l)!
k!l!

LX
⎛
⎝

1

(k + l)! ∑σ∈Sk+l
(sgnσ)(ω ⊗ η)σ

⎞
⎠

= (k + l)!
k!l!

⎛
⎝

1

(k + l)! ∑σ∈Sk+l
(sgnσ)LX(ω ⊗ η)σ

⎞
⎠

= (k + l)!
k!l!

⎛
⎝

1

(k + l)! ∑σ∈Sk+l
(sgnσ)((LXω ⊗ η)σ + (ω ⊗LXη)σ)

⎞
⎠

= (k + l)!
k!l!

⎛
⎝

1

(k + l)! ∑σ∈Sk+l
(sgnσ)((LXω ⊗ η)σ

⎞
⎠
+ (k + l)!

k!l!

⎛
⎝

1

(k + l)! ∑σ∈Sk+l
(sgnσ)(ω ⊗LXη)σ

⎞
⎠

= (k + l)!
k!l!

(Alt(LXω ⊗ η)) +
(k + l)!
k!l!

(Alt(ω ⊗LXη))

= LXω ∧ η + ω ∧LXη

where the second line to the third line follows from 5-14 part (b) in Spivak.

(c) Problem 5-14 (e) in Spivak tells us that

LX(A(X1, ...,Xk, ω1, ..., ωl)) = (LXA)(X1, ...,Xk, ω1, ..., ωl)

+
k

∑
i=1

A(X1, ..., LXXi, ...,Xk, ω1, ..., ωl) +
l

∑
i=1

A(X1, ...,Xk, ω1, ..., LXωi, ..., ωl)
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So applying this to our problem, we see that

X(ω(X1, ...,Xk)) = LX(ω(X1, ...,Xk))

= (LXω)(X1, ...,Xk) +
k

∑
i=1

ω(X1, ..., LXXi, ...,Xk)

= (LXω)(X1, ...,Xk) +
k

∑
i=1

ω(X1, ..., [X,Xi], ...,Xk)

= (LXω)(X1, ...,Xk) +
k

∑
i=1

(−1)i−1ω([X,Xi],X1, ..., X̂i, ...,Xk)

(d) In Theorem 7-13 in Spivak, it is shown that

dω(X1, ...,Xk+1) =
k+1

∑
i=1

(−1)i+1Xi(ω(X1, ..., X̂i, ...,Xk+1)) +∑
i<j

(−1)i+jω([Xi,Xj],X1, ..., X̂i, ..., X̂j , ...,Xk+1)

so using part (c), we see that

dω(X1,...,Xk+1) =
k+1

∑
i=1

(−1)i+1Xi(ω(X1, ..., X̂i, ...,Xk+1)) +∑
i<j

(−1)i+jω([Xi,Xj],X1, ..., X̂i, ..., X̂j , ...,Xk+1)

=
k+1

∑
i=1

(−1)i+1(LXiω)(X1, ..., X̂i, ...,Xk+1) +
k+1

∑
i=1

(−1)i+1∑
j<i

(−1)j+1ω([Xi,Xj],X1, ..., X̂i, ..., X̂j , ...,Xk+1)

+
k+1

∑
i=1

(−1)i+1∑
j>i

(−1)jω([Xi,Xj],X1, ..., X̂i, ..., X̂j , ...,Xk+1)

+∑
i<j

(−1)i+jω([Xi,Xj],X1, ..., X̂i, ..., X̂j , ...,Xk+1)

=
k+1

∑
i=1

(−1)i+1(LXiω)(X1, ..., X̂i, ...,Xk+1)

+ 2∑
j>i

(−1)i+j+1ω([Xi,Xj],X1, ..., X̂i, ..., X̂j , ...,Xk+1) +∑
j>i

(−1)i+jω([Xi,Xj],X1, ..., X̂i, ..., X̂j , ...,Xk+1)

=
k+1

∑
i=1

(−1)i+1(LXiω)(X1, ..., X̂i, ...,Xk+1) +∑
j>i

(−1)i+j+1ω([Xi,Xj],X1, ..., X̂i, ..., X̂j , ...,Xk+1)

(e) By part (d), we see that dω(X1, ...,Xk+1) = LX1ω(X2, ...,Xk+1)+∑k+1
i=2 (−1)i+1(LXiω)(X1, ..., X̂i, ...,Xk+1)+

∑j>i(−1)i+j+1ω([Xi,Xj],X1, ..., X̂i, ..., X̂j , ...,Xk+1), and applying part (d) again to (X1⨼ω) gives

d(X1⨼ω)(X2, ...,Xk+1)

=
k+1

∑
i=2

(−1)i(LXi(X1⨼ω))(X2, ..., X̂i, ...,Xk+1) +∑
j>i

(−1)i+j+1(X1⨼ω)([Xi,Xj],X2, ..., X̂i, ..., X̂j , ...,Xk+1)

=
k+1

∑
i=2

(−1)i(LXiω)(X1,X2, ..., X̂i, ...,Xk+1) +∑
j>i

(−1)i+j+1ω(X1, [Xi,Xj],X2, ..., X̂i, ..., X̂j , ...,Xk+1)

=
k+1

∑
i=2

(−1)i(LXiω)(X1,X2, ..., X̂i, ...,Xk+1) +∑
j>i

(−1)i+jω([Xi,Xj],X1,X2, ..., X̂i, ..., X̂j , ...,Xk+1)

Note that this expression is exactly the last two terms in the equation for dω at the beginning of this
part (e). Thus we see that

dω(X1, ...,Xk+1) = LX1ω(X2, ...,Xk+1) − d(X1⨼ω)(X2, ...,Xk+1)

4



and hence
X⨼dω = LXω − d(X⨼ω)

(f) Plugging in ω = dη in part (e) gives 0 =X⨼ddη = LXdη − d(X⨼dη), and so LXdη = d(X⨼dη). On the
other hand, taking d on both sides of part (e) gives d(X⨼dη) = d(LXη − d(X⨼η) = d(LXη) − 0, and hence
d(X⨼dη) = d(LXη). Combining the two equations we conclude that

LXdη = d(X⨼dη) = d(LXη)
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Question 8-28.

(a) Let ω0 be an (n − 1)-form on Sn−1 such that ∫Sn−1 ω0 ≠ 0, then the degree of αf,g is defined to be

l(f, g) = degαf,g =
∫M×N α

∗
f,gω0

∫Sn−1 ω0

We let H ∶ M × N → N ×M to be the map that take (p, q) ↦ (q, p). H∗ has degree (−1)kl because in
coordinates (m1, ...,mk) for M and (n1, ..., nl) for N , (dm1 ∧ ...∧ dmk) ∧ (dn1 ∧ ...∧ dnl) = (−1)kl(dn1 ∧ ...∧
dnl) ∧ (dm1 ∧ ... ∧ dmk) By definition, αf,g(p, q) = (−1)αg,f(q, p), and so we have

∫
M×N

α∗f,gω0 = ∫
N×M

(−1)klH∗α∗f,gω0 = ∫
N×M

(−1)kl(αf,g ○H)∗ω0

= ∫
N×M

(−1)kl(−1 ⋅ αg,f)∗ω0 = ∫
N×M

(−1)kl+1(αg,f)∗ω0.

and thus we see that

l(f, g) = degαf,g =
∫M×N α

∗
f,gω0

∫Sn−1 ω0
= (−1)kl+1 ∫N×M(−1)kl+1(αg,f)∗ω0

∫Sn−1 ω0
= (−1)kl+1degαg,f = (−1)kl+1l(g, f)

(b) Define Γ ∶ M ×N × [0,1] → Sn−1 ⊂ Rn − {0} by taking (p, q, t) ↦ K(q,t)−H(p,t)
∣K(q,t)−H(p,t)∣

(this is well defined

because of the condition {H(p, t) ∶ p ∈ M} ∩ {K(q, t) ∶ q ∈ N} = ∅ for all t). This defines a smooth map
with Γ(p, q,0) = αf,g(p, q) and Γ(p, q,1) = αf̄ ,ḡ(p, q) and hence it is a smooth homotopy between αf̄ ,ḡ and
αf,g(p, q). Since homotopic maps have the same degree (as they induce the same map on cohomology), we
see that l(f, g) = degαf,g = degαf̄ ,ḡ = l(f̄ , ḡ).

(c) We pick σ′ to be the 2-form on S2 that is defined on p264-265 of Spivak, and let r∗σ′ = xdy∧dz−ydx∧dz+zdx∧dy
(x2+y2+z2)3/2

be the form on R3 defined on p265 of Spivak, where r∗ has degree 1 because it is a retraction. Then

l(f, g) = degαf,g = deg(r ○ αf,g) =
∫S1×S1 α

∗
f,gr

∗σ′

∫S2 σ′
= 1

4π
∫
S1×S1

α∗f,gr
∗σ′

= 1

4π
∫
S1×S1

α∗f,g
xdy ∧ dz − ydx ∧ dz + zdx ∧ dy

(x2 + y2 + z2)3/2

= 1

4π
∫
S1×S1

1

(x2 + y2 + z2)3/2 ○ αf,g
(x ○ αf,gd(y ○ αf,g) ∧ d(z ○ αf,g)

− y ○ αf,gd(x ○ αf,g) ∧ d(z ○ αf,g) + z ○ αf,gd(x ○ αf,g) ∧ d(y ○ αf,g))

= 1

4π
∫

1

0
∫

1

0

g1(v) − f1(u)
∣g(v) − f(u)∣ ((g2)′(v)dv − (f2)′(u)du

∣g(v) − f(u)∣ ) ∧ ((g3)′(v)dv − (f3)′(u)du
∣g(v) − f(u)∣ )

− g
2(v) − f2(u)
∣g(v) − f(u)∣ ((g1)′(v)dv − (f1)′(u)du

∣g(v) − f(u)∣ ) ∧ ((g3)′(v)dv − (f3)′(u)du
∣g(v) − f(u)∣ )

+ g
3(v) − f3(u)
∣g(v) − f(u)∣ ((g1)′(v)dv − (f1)′(u)du

∣g(v) − f(u)∣ ) ∧ ((g2)′(v)dv − (f2)′(u)du
∣g(v) − f(u)∣ )

= 1

4π
∫

1

0
∫

1

0

(g1(v) − f1(u))(−(f2)′(u)(g3)′(u)du ∧ dv + (f3)′(u)(g2)′(u)du ∧ dv)
∣g(v) − f(u)∣3

− 1

4π
∫

1

0
∫

1

0

(g2(v) − f2(u))(−(f1)′(u)(g3)′(u)du ∧ dv + (f3)′(u)(g1)′(u)du ∧ dv)
∣g(v) − f(u)∣3

+ 1

4π
∫

1

0
∫

1

0

(g3(v) − f3(u))(−(f1)′(u)(g2)′(u)du ∧ dv + (f2)′(u)(g1)′(u)du ∧ dv)
∣g(v) − f(u)∣3

= −1

4π
∫

1

0
∫

1

0

A(u, v)
r(u, v)3

du ∧ dv
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Where r(u, v) = ∣g(v) − f(u)∣ and

A(u, v) = det
⎛
⎜
⎝

(f1)′(u) (f2)′(u) (f3)′(u)
(g1)′(v) (g2)′(v) (g3)′(v)

g1(v) − f1(u) g2(v) − f2(u) g3(v) − f3(u)

⎞
⎟
⎠

(d) If f and g both lie in the xy-plane, then the matrix in part (c) has the last column all zero, and
hence the determinant is zero, which means that A(u, v) = 0 for all (u, v) ∈ [0,1]2. Thus we see that if f
and g both lie in the xy-plane, then l(f, g) = 0. Now if f and g lies in the same plane, then we see that the
matrix A for this f, g differs by the matrix A for the xy-plane case by a rotation, and hence is still singular,
with determinant 0. Thus if f and g lies in the same plane, then l(f, g) = 0.

Question 8-29.

(a) Suppose M = ∂N . If (a, b, c) ∈ N −M , then let B(a,b,c) be a ball centerted at (a, b, c) and completely
contained in N −M . Then by question 14 which is in the previous homework, we see that

Ω(a, b, c) = ∫
M
dΘ(a,b,c) = ∫

∂N
dΘ(a,b,c) = ∫

∂B(a,b,c)
dΘ(a,b,c) = ∫

S2
σ′ = −4π

On the other hand, if (a, b, c) ∉ N , then

Ω(a, b, c) = ∫
M
dΘ(a,b,c) = ∫

∂N
dΘ(a,b,c) = ∫

N
ddΘ(a,b,c) = 0

So back to the problem, in the limit that (a, b, c), (a′, b′, c′) → p, we can approximate a neighborhood U ⊂M
of p to be approximately ∂N where N is the half space. Thus in the orientation defined in the problem, we
see that

lim
(a,b,c),(a′,b′,c′)→p

Ω(a, b, c) −Ω(a′, b′, c′) = −4π

(b) For any smooth curve γ ∶ [p, q] → R3 which is an embedding such that the image is contained in R3−M ,
we see that ∫γ dΩ = Ω(γ(q))−Ω(γ(p)) = 0 by part (a). On the other hand, if γ pass through M exactly once

at time t0, and dg
dt

∣t=t0 is in the direction of wp, then ∫γ dΩ = limε→0 Ω(g(t0+ε))−Ω(g(t0−ε)) = −4π by part (a)

again, while if dg
dt

∣t=t0 is in the opposite direction of wp, then ∫γ dΩ = limε→0 Ω(g(t0 + ε))−Ω(g(t0 − ε)) = +4π.

Since g(S1) is just a closed curve in R3, by these observations above, we see that

∫
S1
g∗(dΩ) = ∫

g(S1)
dΩ = −4π(n+ − n−)

and thus

n = n+ − n− = −1

4π
∫
S1
g∗(dΩ)
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(c) From this point on, ∣(x, y, z)∣ = ((x − a)2 + (y − b)2 + (z − c)2)1/2.

∫
S1
f∗ ((y − b)dz − (z − c)dy

∣x, y, z∣3 ) = ∫
f(S1)

((y − b)dz − (z − c)dy
∣x, y, z∣3 ) = ∫

∂M
((y − b)dz − (z − c)dy

∣x, y, z∣3 )

= ∫
M
d((y − b)dz − (z − c)dy

∣(x, y, z)∣3 )

= ∫
M

(−3(x − a)(y − b)
∣(x, y, z)∣5 dx ∧ dz + ( 1

∣(x, y, z)∣3 −
3(y − b)2

∣(x, y, z)∣5 )dy ∧ dz)

− ∫
M

(−3(x − a)(z − c)
∣(x, y, z)∣5 dx ∧ dy + ( 1

∣(x, y, z)∣3 −
3(z − c)2

∣(x, y, z)∣5 )dz ∧ dy)

= ∫
M

( 2

∣(x, y, z)∣3 −
3(y − b)2 + 3(z − c)2

∣(x, y, z)∣5 dz ∧ dy)

+ ∫
M

(−3(x − a)(y − b)
∣(x, y, z)∣5 dx ∧ dz + 3(x − a)(z − c)

∣(x, y, z)∣5 dx ∧ dy)

= ∫
M

( 2

∣(x, y, z)∣3 −
3(y − b)2 + 3(z − c)2 + 3(x − a)2

∣(x, y, z)∣5 + 3(x − a)2

∣(x, y, z)∣5 dz ∧ dy)

+ ∫
M

(−3(x − a)(y − b)
∣(x, y, z)∣5 dx ∧ dz + 3(x − a)(z − c)

∣(x, y, z)∣5 dx ∧ dy)

= ∫
M

( −1

∣(x, y, z)∣3 +
3(x − a)2

∣(x, y, z)∣5 dz ∧ dy) + ∫M (−3(x − a)(y − b)
∣(x, y, z)∣5 dx ∧ dz + 3(x − a)(z − c)

∣(x, y, z)∣5 dx ∧ dy)

= ∂

∂a
∣
(a,b,c)

∫
M

(x − a)dy ∧ dz − (y − b)dx ∧ dz + (z − c)dx ∧ dy
∣(x, y, z)∣3 = ∂Ω

∂a
(a, b, c)

The calculation for ∂
∂b

Ω(a, b, c) and ∂
∂c

Ω(a, b, c) is completely analogous.

(d)

n = −1

4π
∫
S1
g∗(dΩ)

= −1

4π
∫
S1
g∗ ( ∂

∂a
da + ∂

∂b
db + ∂

∂c
dc)

= −1

4π
∫
S1
g∗ ∫

S1
f∗ ((y − b)dz − (z − c)dy

∣x, y, z∣3 )da + f∗ ((z − c)dx − (x − a)dz
∣x, y, z∣3 )db + f∗ ((x − a)dy − (y − b)dx

∣x, y, z∣3 )dc

= −1

4π
∫
S1
∫

1

u=0
g∗ ((f2(u) − b)df3(u) − (f3(u) − c)df2(u)

∣f1(u), f2(u), f (3)(u)∣3 )da

+ g∗ ((f3(t) − c)df1(u) − (f1(u) − a)df3(t)
∣f1(u), f2(u), f (3)(u)∣3 )db + g∗ ((f1(u) − a)df2(u) − (f2(u) − b)df1(u)

∣f1(u), f2(u), f (3)(u)∣3 )dc

= −1

4π
∫

1

v=0
∫

1

u=0
((f2(u) − g2(v))df3(u) − (f3(u) − g3(u))df2(u)

∣r(u, v)∣3 ) ∧ dg1(v)

+ ((f3(t) − g3(v))df1(u) − (f1(u) − g1(v))df3(t)
∣r(u, v)∣3 ) ∧ dg2(v)

+ ((f1(u) − g1(v))df2(u) − (f2(u) − g2(v))df1(u)
∣r(u, v)∣3 ) ∧ dg3(v)

= −1

4π
∫

1

0
∫

1

0

A(u, v)
∣r(u, v)∣3 du ∧ dv

= l(f, g)
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where r(u, v) and A(u, v) are defined as in problem 8-28 part (c) above. Thus we see that

n = n+ − n− = l(f, g)

For the three pictures in the book, the first picture from the left has ∣l(f, g)∣ = 1, the second picture from
the left has ∣l(f, g)∣ = 2, and the third picture from the left has ∣l(f, g)∣ = 0 by counting n+ − n−.
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