Math 214 Final

Kuan-Ying Fang
December 15, 2011

Question 1.

Given a smooth manifold M, a vector field Y : M - T'M on M, and a coordinate chart (U, z), the vector
field Y is smooth on U if and only if the component functions with respect to this chart is smooth (Spivak
chapter 5), i.e. for any p € U if we express
0

oz’
P

Y =3Y'(p)

then Y is smooth on U if and only if the Y are smooth.

Consider M = R", we see that there is a globally defined smooth coordinate chart (R™, (z*)), the standard
smooth structure. Define the vector fields V; to be %, then {V;}iz1,... n is linearly independent (because
{% }1-=17___7n is linearly independent), and the remark at the beginning of the answer shows that {V;} generates
the space of C'* vector fields over R™ as a C*°(M)-module. Thus the space of C*° vector fields over R" is

a free C*°(M)-module.

On the other hand, suppose M = S2. Suppose on the contrary that C'*® vector fields on S? has a linearly
independent generating set as a C*(S5?) module. Since S? is locally diffeomorphic to R?, we see that the
linearly independent generating set can only have exactly two elements. Now let V;,V, be two linearly
independent C* vector fields on S2. Since the hairy ball theorem tells us that V;|, (or V3) must be 0 for
some p € S?, we see that V; and V5 cannot possibly generate the whole C* vector fields on S2. Thus we
have a contradiction, and we conclude that the C* vector fields on S? is not a free C*°(S?)-module.

Question 2.

Let M be a smooth orientable compact connected n-dimensional manifold and w an (n - 1)-form on M.
First of all, even though it is not in the problem’s original assumption on M, I think that M cannot have
any boundary, because suppose M = [1,2] c R an embedded manifold with boundary and w = z € Q°(M) =
C* (M), then dw is never 0 for any p € [1,2]. Thus the problem is not true if M has boundary.

Thus let M be a smooth orientable compact connected n-dimensional manifold without boundary and w
an (n—1)-form on M. Now by Stokes Theorem, we see that [, dw = [;,,w =0 since IM = @. Now since dw
is smooth and fM dw =0, we see that if dw(p) is not the zero map for all p € M, in coordinates this means
that dw(p) = f(p)dz! A ... A dx™ is not zero the zero map for all p (which means f(p) is never zero), and so
by smoothness of dw (which is equivalent to smoothness of f) it must follow that f(p) >0 or f(p) <0 for all
p € M. However, this implies that [,,dw >0 or [, dw <0, which is a contradiction. Thus we comclude that
dw(p) must be the zero map for some p € M.

Question 7-8.

(a) Define ¢ = (B1t1 + B3tz + ... + Bnthyn) and ¢o = (Y212 + ... + Y4 1by, ) to be linearly independent vectors
satisfying the system of equations $17; = a1 for j > 2 and ;2 = —ay2 for ¢ > 3 (such vectors exist for n >3



because there are at least more variables than unknowns, and the case for n < 3 is proved in question 7-6 in
the last problem set). Then we see that w — ¢1 A ¢o = Yicj Qijthi ANpj = (B1v1 A o — Yoo A (1 — Br1) + 1) =
Yicjije{1,2) @i Apj +m where 7 is the part of ¢1 A ¢ that does not involve 11,72, and hence letting
W'=Y geq1,2y Qi Ay +n we see that w = ¢ A ¢2 +w’ where w’ does not involve 91 or ¥. Now using
induction on n and the ”extending to a basis” theorem in linear algebra, we conclude that there is a basis
@1y .eey O Of V* such that w = (d1 A d2) + ... + (Par-1 A ¢2,) for some r.

(b) Suppose we write w = (¢1 APa) + ...+ (Par_1 A 2, ) as constructed in part (a). Now consider wA ... Aw
for r-times, we see that when we expand out the whole expression, the terms in w”” that do not involve the
same ¢; (i.e. the only nonzero terms) are that of the form (@1 A o A ... A a1 A da,). To make this precise,
write w = (¢1 A ¢2) + ...+ (¢2r—1 A (ZSQT) = A1 + ...+ Ar, then

AT
W = > Ap AN NA,

(p1,-spr)e{L,...,m}x"
and the only terms in the above summand that is nonzero is when (p1, ..., p,) has no repeated entry (because
if for some term p; = p; then that term will have repeated ¢, for some k, and hence the wedge product will
be 0), and so the above simplifies to

W= Y Ay A Ay =T AL A LA A =T L A G2 A A ot A oy

oeS,.

which is non-zero and decomposible.

AT+1

On the other hand, consider w , we have

W = > A, A ANA

(p1y--spre1)e{d,...,rpxm¥t

P1 Pr+1

and since we are choosing r + 1 things from the set {1,...,7} of r elements, the expression (p1, ..., pr+1) must
have repeated p; in the entries, and hence A,, A...A Ay ., =0 because it will have repeated ¢; in it. Thus
we see that all the summand is actually zero, and hence

w/\r+1 _ Z A
(P1,--spra1)e{1,.,mpxmHd

AANA

P1

Thus the number r is well-defined.
Question 4.

Let the v; defined in the problem be denoted as v; = Z}Ll vije; where e; is the standard basis for R”. We
let G:[0,€]™ - P. be the map taking (z1,...,25) = (71121 + - + V1nTnys ooy Y1 L1 + oo + Ynnrn ). Note that in
euclidean space, from multivariable calculus we know that there is a "mean value” property for integrals of

continuous functions, i.e.
dx = f 1d
fs f(x)dx = f(c) p x

where z = (z',...,2") and S a measurable set and c € S. So now it follows

/ w:/ dw
OP. P,
- f G* duw
[0,e]™

0 0
(G )L . f 1d
(G dw)] (&Ul . Oxn C) [0,e]" v
0 0
—dolgo (G- =2 e
Wl (G oxt|, oxm C)6




where c € [0,€]™. Thus we see that

1 1 0 0 n
ll_r,l(l) e—n \/(;Pe w = ll_l)% ;dw|G(c) (G*awl C, ...,G*@ C) €
) 0 0
= hmdw|G(c) (Z Y7 3o Z Ynj 35 )
o1 O G(c)  j=1 Oz G(e)
= dw|g(0) (Z Y15 PRRRE Z Ynj o= )
=0 gy AT 07 (g

Question 7-18.

(a) Suppose w is a k-form, then this is equivalent as saying w,(X1,...,Y,....Y, ..., X)) = 0Vp, i.e. that for
all p, w is zero whenever any two of its arguments is the same. Now (Lxw), = limpo 1 [(¢jw)p — wp],
so (Lxw)p(X1,....Y,....Y, .., X;) = limhﬂo%[(qﬁ,’;w)p(Xl,...,Y,...,K...,Xk) - wp(Xy,...,.Y, .Y, X)) =
limy, o %[0 -0] =0, and hence Lxw is also a k-form.

(b)
Lx(wAn)=Lx ((kktl!l)!Alt(w ® 77)) = (kle!l)!LX ((k i il Ugﬁl(b‘gna)(w ® n)”)
- (kk}’“l)! G i i U;H’(Sgna)Lx(w ® n)”)
- (kkJ!rl!l)! C i D! O.E;W(ng)(wxw e lee LXT’)U))
- (kk;!l)! - i 5 agw(sgng)((wa ® 77)0) + (kkT“l)! ( - i 5 ae;k”(sgng)(w ® an)")
= (kktl!l)! (Alt(Lxw ®1n)) + (kkw;“l)! (Alt(w® Lxn))

=LxwAn+wALxn

where the second line to the third line follows from 5-14 part (b) in Spivak.
(c) Problem 5-14 (e) in Spivak tells us that

Lx(A(Xl, ...,X;ﬁwl, ...,wl)) = (LXA)(X17 ...,Xk,wl, ...,wl)

k l
+ ZA(Xl, ...,LxXi, ...,Xk,wl, ...,wl) + ZA(Xl, ...,Xk,wl, ...,wai,...,wl)

i=1 =1



So applying this to our problem, we see that
X(W(Xh ) Xk)) = LX(W(le 7Xk))

M=

:(wa)(Xl,.. Xk)+ w(Xl,...,LXXi,...,Xk)

I
=

i

™M=

:(LXw)(Xl,...,Xk)+ W(Xl, [X,Xi],...,Xk)

Il
—

7

= (Lxw)(X1,..., Xp) + Z(-ni—lw([x, Xi], X1, Xy oy Xi)

(d) In Theorem 7-13 in Spivak, it is shown that

k+1 ) . o . .
dw(Xl, ...,Xk+1) = Z (—1)”1X¢(w(X1, ...,Xi, ...,Xk+1)) + Z(—1)1+JW([X7;,XJ'],X1, ...,Xi, ...,Xj, ...,Xk+1)
i=1 i<j

so using part (c), we see that

k+1

dw (X1 ey Xa1) = 2 (1) X (0( X1y ooy Xy ooy Xier1)) + 20 (-1) o ([Xi, X1 X1, oy Xy ey Xy ooy X1
i=1 i<J
k+1 k+1 . X ~
= Z( D)L, w) (X1 oo Xy ooy Xpr1) + 20 (F1) S (1) ([ Xy X5 T, Xy oo Xy ooy Xy ooy Xir1)
i=1 i=1 j<i
k+1 ~
+ Z( DS 1) w([ X, X1 Xy ooy Xy ooy Xy ooy Xipa1)
J>t
+ S D) O([Xay X1, X1y ey Xy eoes Xy eony Xpo1)
i<j
k+1

= Z( DN (Lx,w) (X1, ooy Xiy ooy Xir1)

+2 Z(_1)W+1w([xi,xj],xl, ooy Xy ooy Xy oons Xper1) + (1) ([ Xy X5 T, Xy ooy Xy ooy Xy ooy Xs1)

J>1 7>
k+1

= Z( D)L, w) (X1, oo Xy ooy Xir1) + D (1) w0 ([ X0, X1 X1y oy Xy ooy Xy ooy X1
=1 7>

(e) By part (d), we see that (le(Xl7 , Xk+1) = Lx,w(Xa, ... Xk+1)+2k+1( DN (Lx,w) (X, ...y Xi,.. o Xpy1)+
(1) ([ X3, X1, X1, -y Xiy oy X, ooy Xpe1), and applying part (d) again to (X;-w) gives

g>z
d(X14w)(X2,...,Xk+1)

k+1 ) R o R R

= Z(—l)Z(LXi(Xl—‘w))(XQ,...,Xi,...,XkJrl) +Z(—1)2+]+1(X140J)([Xi,Xj],XQ,...,Xi,...,Xj7...,Xk+1)
=2 J>i
k+1 ) R o . .

= Z(_l)Z(LXiW)(XlaX%"'7X7l7"'an+1) +Z(_l)ZJr]Jrlw(le[Xian]7X27"'7Xi>~-'7Xj7"'7Xk+l)
=2 7>
k+1 ) R o R R

= Z(—I)Z(inw)(Xl,X%...,Xi,...,Xk_H) +Z(—l)HJw([Xi,Xj],Xl,XQ,...,Xi,...,Xj,...,XkH)
=2 7>

Note that this expression is exactly the last two terms in the equation for dw at the beginning of this
part (e). Thus we see that

dw(X1, ...,Xk+1) = LX1W(X27 ...,Xk+1) - d(X14w)(X2, ...,X]ﬁ.l)



and hence
X-dw = Lxw-d(X-w)

(f) Plugging in w = dn in part (e) gives 0 = X=ddn = Lxdn - d(X-dn), and so Lxdn = d(X-dn). On the
other hand, taking d on both sides of part (e) gives d(X-dn) = d(Lxn - d(X-n) = d(Lxn) -0, and hence
d(X-=dn) = d(Lxn). Combining the two equations we conclude that

Lxdn=d(X~dn)=d(Lxn)



Question 8-28.

(a) Let wy be an (n - 1)-form on S™! such that [g. , wo # 0, then the degree of ay 4 is defined to be
foN a},gwo
fsn—l wo

We let H: M x N - N x M to be the map that take (p,q) = (q,p). H* has degree (-1)*! because in
coordinates (my,...,my) for M and (nq,...,n;) for N, (dmq A ... Admy) A (dny A ... Adng) = (=1)(dny Ao A
dni) A (dmq A ... Admy,) By definition, ay 4(p,q) = (=1)ag,£(g,p), and so we have

. _ RN e :f _1)k H)*
foNaf’gwo [NxM( ) AF.g00 NxM( )" (agg 0 H) wo
_ DR (] ) w :f SR )
Jo DL ag ) w0 = [ (DM g ) e

I(f,g) =degay,y =

and thus we see that

e wo o (G (g, 1) *wo
l(f,g) degafg MxN fg ( 1)I~cl+1 .[N M 9.f ( 1)kl+1degag’f _ (—1)kl+1l(g,f)
fSn 1 Wo fsn 1Wo

(b) Define I': M x N x [0,1] - S"! ¢ R" - {0} by taking (p,q,t) = % (this is well defined
because of the condition {H(p,t) : p e M} n{K(q,t) : ¢ € N} = @& for all t). This defines a smooth map
with T'(p, ¢,0) = af 4(p,q) and I'(p,q,1) = a5 ;(p,q) and hence it is a smooth homotopy between ay ; and

ay.q¢(p,q). Since homotopic maps have the same degree (as they induce the same map on cohomology)
see that [(f, g) = degay 4 = degay ; = 1(f,9).
(c) We pick o’ to be the 2-form on S? that is defined on p264-265 of Spivak, and let r*¢’ = Zdurdz_ydrrdzszdrndy

(a2+y2+22)3/2

be the form on R? defined on p265 of Spivak, where r* has degree 1 because it is a retraction. Then

* * !
fSlxsl Otf’g’f‘ g 1 [ * * 1
I(f,g) =degays, =deg(roa == - - ay ., r
(f,9) = degay g = deg(roayg) [0’ T S @ra”

1 [ . rdyAndz-—ydrAndz+ zdx Ady
= — (o
A Jsixst 19 (22 +y2 +22)3/2

1 1
471_ \/‘;lxsl (x2+y +22)3/20()é (IOOéfgd(yOOlfg)/\d(ZOOéfg)

—yoajgd(zoayrg)Ad(zoay,)+zoayr d(Toay,)rnd(yoay,))

L reesso ((g?)'(v)dv - (fz)’(U)d“) A ( (¢°)' (v)dv - (f?’)'(u)du)
0

am lg(v) = f(w) lg(v) = f(w) lg(v) = f(w)
_ W) - fA(w) ((91)’(v)dv— (fl)’(U)dU) R ((93)’(v)dv— (f?’)’(U)dU)
lg(v) = f(w) lg(v) = f(w) lg(v) = f(w)
g°(v) - f3(u) ((91)’(v)dv - (fl)’(U)du) R ((92)’(v)dv - (fQ)’(U)dU)
Ig(v) f(w)] lg(v) = f (w) lg(v) = f(w)
_1 f f (g (v) = FH ) (=(F*) (W) (g°) (W)du A dv + (£°)"(u) ()" (w)du A dv)
lg(v) = f(w)?
_iflfl (g*(v) = F2() (D) () (¢°) (w)du A dv + (£2)"(u) (g")" (w)du A dv)
lg(v) = f(w)?

f [ (g°(v) = PP ) ((F) () (9°) (w)du A dv + (£2)"(u) (g")" (u)du A dv)

lg(v) = f(w)[?
L A(u,v
/ fo T(EL v)?3 Adv




Where r(u,v) =|g(v) — f(u)| and

(F1)"(w) (£2)"(w) (£2)"(w)
A(u,v) =det|  (g')"(v) (9*)'(v) (%) (v)
g' () = fi(w) g*() - f2(w) ¢*(v) - f(u)

(d) If f and g both lie in the zy-plane, then the matrix in part (c¢) has the last column all zero, and
hence the determinant is zero, which means that A(u,v) = 0 for all (u,v) € [0,1]?. Thus we see that if f
and g both lie in the zy-plane, then I(f,g) =0. Now if f and g lies in the same plane, then we see that the
matrix A for this f, g differs by the matrix A for the xy-plane case by a rotation, and hence is still singular,
with determinant 0. Thus if f and ¢ lies in the same plane, then I(f,g) = 0.

Question 8-29.

(a) Suppose M = ON. If (a,b,c) € N - M, then let B, ) be a ball centerted at (a,b,c) and completely
contained in N — M. Then by question 14 which is in the previous homework, we see that

Q(a’bv C) = ﬁwd@(a,b,c) = f(’?N d®(a,b,c) = faB( \ )d@(a,b7c) = /‘;2 o' = 4w

On the other hand, if (a,b,c) ¢ N, then

Q(aa b, C) = ]];[ de)(a,b,c) = [8N d®(a,b,c) = jI\Vdde(a,b,c) =0

So back to the problem, in the limit that (a,b,c), (a’,b’',¢") — p, we can approximate a neighborhood U ¢ M
of p to be approximately N where N is the half space. Thus in the orientation defined in the problem, we
see that

Q(a,b,c) -Q(a’, b, ') =47

lim
(a,b,c),(a’,b,c")—=p

(b) For any smooth curve v : [p, ¢] - R? which is an embedding such that the image is contained in R*~M,
we see that fﬂY dQ=Q(~v(q)) -Q(~v(p)) = 0 by part (a). On the other hand, if v pass through M exactly once

at time tg, and %h:m is in the direction of w,, then fy dQ =lim.o Q(g(to+€))-Q(g(to—€)) = —4m by part (a)
again, while if %h:to is in the opposite direction of wy, then ]ﬂ{ dQ) = limeo Q(g(to+¢€)) - Qg(to—€)) = +4r.
Since g(S') is just a closed curve in R?, by these observations above, we see that

*(d2 =f dQ=-4x(n" -n~
Juoam= [ (n* =n")

and thus

n:n*—n_:—lfglg*(dQ)

™



(c) From this point on, |(z,y,2)| = ((z —a)? + (y - b)? + (z —¢)}) /2,

[ (y=b)dz—(z-c)dy\ _ (y-b)dz—-(z-c)dy\ _ (y—b)dz - (2 -c)dy
Jorf ( wy.2P )‘fﬂsw( 9.2 )‘faM( 29,2 )

:/ d(@ b)dz - (2 - c)dy)
@,y 2)P

( S0 b)dxAdz+(| - QTS)dyAdz)
/M( (fw s (|(x S |?a(:z;3|25)d“dy)
fM(I (z,y,2)P - |?:):y+ ig; 2 Ady)
L g o
+[M( 3(@ ;)Z(;J|5 “3z-a)(y-b) . /\dz+de/\dy)
fM(|xyz ?chxy Z))|5d Ady)+A{(deAdz+WdIAdy)
(w a)dy ndz = (y=b)dz ndz+ (2= c)de ndy _ (a’b,c)
@ (@) (2.9, 2)P

The calculation for %Q(a,b, ¢) and %Q(a,b, ¢) is completely analogous.
(d)
= [ g0
-1 0 0 0
=E/ g (%da+%db+a—d0)
y-b)dz - (z-c)dy f (z=c)dx - (x—-a)dz . (x—a)dy - (y-b)dx
f51 fS ( 2, y, 2 )da+f ( 2, y, 2 )db+f ( |z, y, 2 )dc
L[ (C -G i),
st Ju=0 [f1(w), f2(u), F3) (u)]?
(LSO OO (L0200,
[f1(w), f2(w), FB) (u)]? [f1(w), f2(u), f3) (u)?
_ Lot et (P () - 62 (0)dfP (u) = (f? (u) - g°(u))df? (u) 1
L (o) ) st
3 v u u v))df?
((f (t) - g°(v))df* |(r()u U()J|"3( ) = g' (v))df (t))/\dgz(v)

((f (u) = g" (v))df?(u) - (f*(u) - g*(v))df" (U)) A dg?(v)
[ (u, 0)[?

L A(u, U)
./ [ |7 (u, fu)|5

—l(fg

+9g




where r(u,v) and A(u,v) are defined as in problem 8-28 part (c¢) above. Thus we see that
n=n"-n"=I(f9g)

For the three pictures in the book, the first picture from the left has |I(f, g)| = 1, the second picture from
the left has |I(f,g)| = 2, and the third picture from the left has |I(f, g)| = 0 by counting n* —n~.
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