Math 214 Problem Set 5

Kuan-Ying Fang

November 16, 2011

Question 6-6.

Theorem 5 states that every C^{∞} integrable k-dimensional distribution Δ on M has an integral manifold. So consider the distribution Δ in $\mathbb{R}^m \times \mathbb{R}^n$ defined by

$$\Delta_p = \left\{ \sum_{i=1}^m r^i \frac{\partial}{\partial t^i} \bigg|_p + \sum_{k=1}^n \left(\sum_{i=1}^m r^i f_i^k(p) \right) \frac{\partial}{\partial x^k} \bigg|_p : r \in \mathbb{R}^m \right\}$$

Note that Δ is spanned by the vector fields

$$X_i = \frac{\partial}{\partial t_i} + \sum_{k=1}^n f_i^k \frac{\partial}{\partial x^k}$$
 , for $i=1,...,m$

We will first show that Δ is a C^{∞} integrable k-dimensional distribution if and only if condition (**) of Theorem 1 is satisfied, and hence Δ has an integral manifold if and only if condition (**) is satisfied. Let our integral manifold be a graph of a function $\alpha(r_1, ..., r_m) = (\alpha^1(r_1, ..., r_m), ..., \alpha^n(r_1, ..., r_m))$, i.e. the integral manifold looks like $\{(r_1, ..., r_m, \alpha^1(r_1, ..., r_m), ..., \alpha^n(r_1, ..., r_m)) : r = (r_1, ..., r_m) \in \mathbb{R}^n\}$, then being an integral manifold of Δ translates to the conditions $\frac{\partial}{\partial t_i} + \frac{\partial \alpha^1}{\partial t_i} \frac{\partial}{\partial x^1} + ... + \frac{\partial \alpha^n}{\partial t_i} \frac{\partial}{\partial x^n} \in \Delta_p$, which means $\frac{\partial \alpha^k}{\partial t_i} = f_i^k$, and so $\frac{\partial \alpha}{\partial t_i} = f_i$, which are precisely the differential equations that Theorem 1 solves. Thus we only need to show that Δ is a C^{∞} integrable k-dimensional distribution if and only if condition (**) of Theorem 1 is satisfied (which, together with the argument above, will prove Theorem 1).

We will verify that Δ is a C^{∞} integrable k-dimensional distribution if and only if condition (**) of Theorem 1 is satisfied. Now by proposition 4 we only need to check that the Lie bracket on the X_i belongs to Δ . We now compute

$$\begin{bmatrix} X_i, X_j \end{bmatrix} = \sum_{k=1}^n \left(\frac{\partial f_j^k}{\partial t^i} - \frac{\partial f_i^k}{\partial t^j} + \sum_{k'=1}^n f_i^{k'} \frac{\partial f_j^k}{\partial x^{k'}} - \sum_{k'=1}^n f_j^{k'} \frac{\partial f_i^k}{\partial x^{k'}} \right) \cdot \frac{\partial}{\partial x^k}$$

Thus $[X_i, X_j] \in \Delta$ if and only if

$$\frac{\partial f_j^k}{\partial t^i} - \frac{\partial f_i^k}{\partial t^j} + \sum_{k'=1}^n f_i^{k'} \frac{\partial f_j^k}{\partial x^{k'}} - \sum_{k'=1}^n f_j^{k'} \frac{\partial f_i^k}{\partial x^{k'}} = 0 \text{ for all } k = 1, \dots, n$$

and as i, j are arbitrary, this is precisely condition (**), and we have proved Theorem 1 from Theorem 5.

Question 6-8.

Define $\alpha(x, y) = (\alpha^1(x, y), \alpha^2(x, y))$, and letting $f_1 = (u(x, y, \alpha^1(x, y), \alpha^2(x, y)), v(x, y, \alpha^1(x, y), \alpha^2(x, y)))$ and $f_2 = (-v(x, y, \alpha^1(x, y), \alpha^2(x, y)), u(x, y, \alpha^1(x, y), \alpha^2(x, y)))$, the differential equation listed in the problem translates to solving $\frac{\partial \alpha}{\partial x} = f_1$ and $\frac{\partial \alpha}{\partial y} = f_2$. Now Theorem 1 tells us when this system of differential equations have a solution: when f_1, f_2 satisfies condition (**). Thus it remains to check condition (**). Since i, j = 1, 2 in our case, we see that we only need to check i = 1, j = 2 (because condition (**) is automatically satisfied for i = j and the case i = 2, j = 1 is just -1 times the case i = 1, j = 2). Now

$$(**) = \frac{\partial f_1}{\partial y^1} - \frac{\partial f_2}{\partial x^1} + \frac{\partial f_1}{\partial x^2} f_2^1 + \frac{\partial f_1}{\partial y^2} f_2^2 - \frac{\partial f_2}{\partial x^2} f_1^1 - \frac{\partial f_2}{\partial y^2} f_2^2$$

$$= \left(\frac{\partial u}{\partial y^1}, \frac{\partial v}{\partial y^1}\right) - \left(-\frac{\partial v}{\partial x^1}, \frac{\partial u}{\partial x^1}\right) + \left(\frac{\partial u}{\partial x^2}, \frac{\partial v}{\partial x^2}\right) (-v) + \left(\frac{\partial u}{\partial y^2}, \frac{\partial v}{\partial y^2}\right) (u) - \left(\frac{\partial - v}{\partial x^2}, \frac{\partial u}{\partial x^2}\right) (u) - \left(\frac{\partial - v}{\partial y^2}, \frac{\partial u}{\partial y^2}\right) (v)$$

$$= 0$$

Where the last equality follows from the Cauchy-Riemann relations of u, v. Thus (**) is satisfied, and hence α is the solution to the differential equations listed above. Therefore (sorry, I am changing notations to $\alpha = \phi$) we conclude that the differential equation $\phi'(z) = f(z, \phi(z))$ has a solution in a neighborhood of z_0 with initial condition $\phi(z_0) = w_0$.

Question 7-2.

We want to show that $\bar{\wedge}$ is not associative. To see this, we let $\omega, \eta \in \Omega^1(V)$ and $\theta \in \Omega^2(V)$. Then

$$\omega \bar{\wedge} (\eta \bar{\wedge} \theta)(v_1, v_2, v_3, v_4) = w \bar{\wedge} \left(\sum_{\sigma \in S_3} sgn(\sigma)(\eta \otimes \theta)^{\sigma} \right) (v_1, v_2, v_3, v_4)$$

$$= \sum_{\xi \in S_4} sgn(\xi) \left(\omega \otimes \sum_{\sigma \in S_3} sgn(\sigma)(\eta \otimes \theta)^{\sigma} \right)^{\xi} (v_1, v_2, v_3, v_4)$$

$$= \sum_{\xi \in S_4} sgn(\xi) \sum_{\sigma \in S_3} sgn(\sigma) \omega(v_{\xi(1)}) \eta(v_{\sigma \circ \xi(2)}) \theta(v_{\sigma \circ \xi(3)}, v_{\sigma \circ \xi(4)})$$

On the other hand

$$\begin{aligned} (\omega \bar{\wedge} \eta) \bar{\wedge} \theta(v_1, v_2, v_3, v_4) &= \left(\sum_{\sigma \in S_2} sgn(\sigma) (\omega \otimes \eta)^{\sigma} \right) \bar{\wedge} \theta(v_1, v_2, v_3, v_4) \\ &= \sum_{\xi \in S_4} sgn(\xi) \left(\sum_{\sigma \in S_2} sgn(\sigma) (\omega \otimes \eta)^{\sigma} \otimes \theta \right)^{\xi} (v_1, v_2, v_3, v_4) \\ &= \sum_{\xi \in S_4} sgn(\xi) \sum_{\sigma \in S_2} sgn(\sigma) \omega(v_{\sigma \circ \xi(1)}) \eta(v_{\sigma \circ \xi(2)}) \theta(v_{\xi(3)}, v_{\xi(4)}) \end{aligned}$$

The two expressions are not equal, because the first one sums over S_4 "three times", while the second one sums over S_4 "two times". Thus we see that the $\bar{\wedge}$ so defined is NOT associative.

Question 7-4.

(a) Let $a, b \in V$ and $c \in \Omega^k(V)$, then for any $v_1, ..., v_{k-2}$

$$\begin{aligned} a \neg (b \neg c)(v_1, ..., v_{k-2}) &= b \neg c(a, v_1, ..., v_{k-2}) \\ &= c(b, a, v_1, ..., v_{k-2}) \\ &= -c(a, b, v_1, ..., v_{k-2}) \\ &= -a \neg c(b, v_1, ..., v_{k-2}) \\ &= -b \neg (a \neg c)(v_1, ..., v_{k-2}) \end{aligned}$$

Thus $a \neg (b \neg c) = -b \neg (a \neg c)$.

(b) Let $v_1, ..., v_n$ be a basis of V and $\phi_1, ..., \phi_n$ be the dual basis, then letting $v_j = X_1$ we see that $v_j - (\phi_{i_1} \wedge ... \wedge \phi_{i_k})(X_2, ..., X_k) = \phi_{i_1} \wedge ... \wedge \phi_{i_k}(X_1, ..., X_k) = \det(\phi_{i_r}(X_s))$. If $j \neq i_\alpha$ for any i_α , then we see that the first column of this matrix is all 0, and hence the determinant is 0. On the other hand, if $j = i_\alpha$, then we see that the first column of the matrix has a 1 in the α -th position, and 0 otherwise. Therefore the determinant $\det(\phi_{i_r}(X_s)) = (-1)^{\alpha-1} * \det M$ where M is obtained from taking out the first column and α -th row in the matrix $(\phi_{i_r}(X_s))$. However, $\det M$ is precisely $\phi_{i_1} \wedge ... \wedge \phi_{i_\alpha} \wedge ... \wedge \phi_{i_k}(X_2, ..., X_k)$, and hence we see that $v_j - (\phi_{i_1} \wedge ... \wedge \phi_{i_k}) = (-1)^{\alpha-1} \phi_{i_1} \wedge ... \wedge \phi_{i_k}$ when $j = i_\alpha$.

(c) We will use part (b) to prove this. Since $\Omega^k(V)$ has basis $\{\phi_{i_1} \wedge ... \wedge \phi_{i_k} : i_1 < ... < i_k\}$ and similarly $\Omega^l(V)$ has basis $\{\phi_{i_1} \wedge ... \wedge \phi_{i_l} : i_1 < ... < i_l\}$, and both sides of the equation

$$v \dashv (\omega_1 \land \omega_2) = (v \dashv \omega_1) \land \omega_2 + (-1)^k \omega_1 \land (v \dashv \omega_2)$$

are linear (in the "v" entry, the " ω_1 " entry, and " ω_2 " entry), we can just verify it for $v = v_r$ for some r, $\omega_1 = \phi_{i_1} \wedge \ldots \wedge \phi_{i_k}$, and $\omega_2 = \phi_{j_1} \wedge \ldots \wedge \phi_{j_l}$. Then part (b) tells us that if $r \neq i_\alpha, j_\alpha$ for any i_α, j_α , then both sides equal 0. On the other hand, if $r = i_\alpha$, then

$$v_{r} \dashv (\omega_{1} \land \omega_{2}) = (-1)^{\alpha - 1} \phi_{i_{1}} \land \dots \land \overline{\phi_{i_{\alpha}}} \land \dots \land \phi_{i_{k}} \land \phi_{j_{1}} \land \dots \land \phi_{j_{l}}$$
$$= ((-1)^{\alpha - 1} \phi_{i_{1}} \land \dots \land \widehat{\phi_{i_{\alpha}}} \land \dots \land \phi_{i_{k}}) \land (\phi_{j_{1}} \land \dots \land \phi_{j_{l}}) + 0$$
$$= (v_{r} \dashv \omega_{1}) \land \omega_{2} + (-1)^{k} \omega_{1} \land (v_{r} \dashv \omega_{2})$$

where the last term in the last equation is 0, while if $r = j_{\beta}$, then

$$v_{r} \dashv (\omega_{1} \land \omega_{2}) = (-1)^{\beta+k-1} \phi_{i_{1}} \land \dots \land \phi_{i_{k}} \land \phi_{j_{1}} \land \dots \land \widehat{\phi_{j_{\beta}}} \land \dots \land \phi_{j_{l}}$$
$$= 0 + (-1)^{k} (\phi_{i_{1}} \land \dots \land \phi_{i_{k}}) \land (-1)^{\beta-1} (\phi_{j_{1}} \land \dots \land \widehat{\phi_{j_{\beta}}} \land \dots \land \phi_{j_{l}})$$
$$= (v_{r} \dashv \omega_{1}) \land \omega_{2} + (-1)^{k} \omega_{1} \land (v_{r} \dashv \omega_{2})$$

where the first term in the last equation is 0. Thus we conclude that

$$v \dashv (\omega_1 \land \omega_2) = (v \dashv \omega_1) \land \omega_2 + (-1)^k \omega_1 \land (v \dashv \omega_2)$$

Question 7-5.

Let $F: M \to \mathbb{R}^n$ be defined as $F = (f^1, ..., f^n)$ where $f^i: M \to \mathbb{R}$ are smooth. Given $p \in M$, let (x, U_0) be a coordinate system of M. Now f^i form a coordinate system in a neighborhood U of $p \in M$ if and only if $F|_U$ is a diffeomorphism from U onto an open subset V of \mathbb{R}^n , and this happens if and only if DF(p) is a nonsingular matrix (by Inverse Function Theorem). Now $df_1 \wedge ... \wedge df_n(p) \neq 0$ if and only if $df_1 \wedge ... \wedge df_n(\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^n}) \neq 0$ (this follows from question 7-16, which will be proved later). But

$$df_1 \wedge \ldots \wedge df_n\left(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}\right) = \det\left(df^j\left(\frac{\partial}{\partial x^i}\right)\right) = \det\left(\frac{\partial f^j}{\partial x^i}\right)$$

and this last expression is precisely $\det(DF(p))$, and hence we see that $df_1 \wedge ... \wedge df_n(p) \neq 0$ if and only if f^i form a coordinate system in a neighborhood U of $p \in M$.

Question 7-6.

(a) For dim V = 1 and 2, $\Omega^2(V)$ is 0-dimensional and 1-dimensional, respectively, and hence every $\omega \in \Omega^2(V)$ is automatically decomposable. So suppose dim V = 3. Let $\epsilon^1, \epsilon^2, \epsilon^3$ be a dual basis for V, then

every $\omega \in \Omega^2(V)$ can be written as $a\epsilon^1 \wedge \epsilon^2 + b\epsilon^1 \wedge \epsilon^3 + c\epsilon^2 \wedge \epsilon^3$. However,

$$\begin{pmatrix} (a+1)\epsilon^1 + \epsilon^2 + \left(\frac{b+c}{a} + c\right)\epsilon^3 \end{pmatrix} \wedge \left(\epsilon^1 + \epsilon^2 + \left(\frac{b+c}{a}\right)\epsilon^3 \right) \\ = (a+1)\epsilon^1 \wedge \epsilon^2 + (a+1)\left(\frac{b+c}{a}\right)\epsilon^1 \wedge \epsilon^3 + \epsilon^2 \wedge \epsilon^1 + \left(\frac{b+c}{a}\right)\epsilon^2 \wedge \epsilon^3 + \left(\frac{b+c}{a} + c\right)\epsilon^3 \wedge \epsilon^1 + \left(\frac{b+c}{a} + c\right)\epsilon^3 \wedge \epsilon^2 \\ = a\epsilon^1 \wedge \epsilon^2 + b\epsilon^1 \wedge \epsilon^3 + c\epsilon^2 \wedge \epsilon^3$$

This shows that $a\epsilon^1 \wedge \epsilon^2 + b\epsilon^1 \wedge \epsilon^3 + c\epsilon^2 \wedge \epsilon^3 = ((a+1)\epsilon^1 + \epsilon^2 + (\frac{b+c}{a} + c)\epsilon^3) \wedge (\epsilon^1 + \epsilon^2 + (\frac{b+c}{a})\epsilon^3)$ is decomposable as the wedge product of two elements in $\Omega^1(V)$, and thus we conclude that for dim $V \leq 3$, every $\omega \in \Omega^2(V)$ is decomposable.

(b) Suppose ϕ_i , i = 1, ..., 4 are independent, and $\omega = (\phi_1 \land \phi_2) + (\phi_3 \land \phi_4)$. We will show that ω is not decomposable. We compute $\omega \land \omega$.

$$\omega \wedge \omega = ((\phi_1 \wedge \phi_2) + (\phi_3 \wedge \phi_4)) \wedge ((\phi_1 \wedge \phi_2) + (\phi_3 \wedge \phi_4))$$
$$= 2\phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$$

If ω is decomposible, then $\omega \wedge \omega = 0$, so we see that ω cannot be decomposable. This shows that for dim $V \ge 4$ there are elements $\omega \in \Omega^2(V)$ that is NOT decomposable.

Question 7-16.

(a) Since ϵ^{I} (where I is an increasing multi-index of length k) forms a basis of $\Omega^{k}(V)$, we can write $\omega = \sum_{I} c_{I} \epsilon^{I}$. Now as $w_{i} = \sum_{j=1}^{n} \alpha_{ji} v_{j}$ (where i = 1, ..., k), we let $T = (\alpha_{ji})$ be the matrix consisting of entries α_{ji} , then $w_{i} = Tv_{i}$ for all i = 1, ..., k. Then

$$\omega(w_1, ..., w_k) = \omega(Tv_1, ..., Tv_k)$$
$$= \sum_I c_I \epsilon^I (Tv_1, ..., Tv_k)$$
$$= \sum_I c_I \alpha_I$$

where α_I is the determinant of the $k \times k$ minor of T obtained by selecting rows $i_1, ..., i_k$. On the other hand, given $i_1 < ... < i_k$, we have $\omega(v_{i_1}, ..., v_{i_k}) = \sum_I c_I \epsilon^I(v_{i_1}, ..., v_{i_k}) = c_{i_1 < ... < i_k}$. Thus we see that $\omega(w_1, ..., w_k) = \sum_I c_I \alpha_I \omega(v_{i_1}, ..., v_{i_k})$.

(b) If $f: M \to N$ is a C^{∞} function between *n*-manifolds, then $f^*(gdy^{i_1} \land ... \land dy^{i_k}) = (g \circ f)d(y^{i_1} \circ f) \land ... \land d(y^{i_k} \circ f)$ (Since f^* is linear, we will check only on basis elements $dy^{i_1} \land ... \land dy^{i_k}$). By part (a), a k-form is determined by where it sends $(v_{i_1}, ..., v_{i_k})$ for $i_1 < ... < i_k$ an increasing multi-index. Now

$$(g \circ f)d(y^{i_1} \circ f) \wedge \dots \wedge d(y^{i_k} \circ f)\left(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}}\right) = (g \circ f)\det\left(\frac{\partial(y^{i_\alpha} \circ f)}{\partial x^{j_\beta}}\right)$$

Now since $dx^{j_1} \wedge ... \wedge dx^{j_k} \left(\frac{\partial}{\partial x^{j_1}}, ..., \frac{\partial}{\partial x^{j_k}} \right) = 1$, we see that

$$f^*(gdy^{i_1} \wedge \dots \wedge dy^{i_k}) = \sum_J (g \circ f) \det\left(\frac{\partial (y^{i_\alpha} \circ f)}{\partial x^{j_\beta}}\right) dx^{j_1} \wedge \dots \wedge dx^{j_k}$$

and this is a generalization of Theorem 7. From what we proved in this part, letting f = Id, corollary 8 now generalizes to: If (x, U) and (y, V) are two coordinate systems on M then

$$gdy^{i_1} \wedge \ldots \wedge dy^{i_k} = \sum_J g \cdot \det\left(\frac{\partial(y^{i_\alpha})}{\partial x^{j_\beta}}\right) dx^{j_1} \wedge \ldots \wedge dx^{j_k}$$

$$\begin{split} d(gdy^{i_1} \wedge \ldots \wedge dy^{i_k}) &= dg \wedge dy^{i_1} \wedge \ldots \wedge dy^{i_k} = \sum_i \left(\frac{\partial g}{\partial x^i} dx^i\right) \wedge \sum_J \det\left(\frac{\partial (y^{i\alpha})}{\partial x^{j_\beta}}\right) dx^{j_1} \wedge \ldots \wedge dx^{j_k} \\ &= \sum_{i \notin J} \sum_J \det\left(\frac{\partial (y^{i\alpha})}{\partial x^{j_\beta}}\right) \left(\frac{\partial g}{\partial x^i} dx^i\right) \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_k} = \sum_J \sum_i \det\left(\frac{\partial (y^{i\alpha})}{\partial x^{j_\beta}}\right) \left(\frac{\partial g}{\partial x^i} dx^i\right) \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_k} \\ &= \sum_J dg \det\left(\frac{\partial (y^{i\alpha})}{\partial x^{j_\beta}}\right) \wedge dx^{j_1} \wedge \ldots \wedge dx^{j_k} = d\left(\sum_J g \cdot \det\left(\frac{\partial (y^{i\alpha})}{\partial x^{j_\beta}}\right) dx^{j_1} \wedge \ldots \wedge dx^{j_k}\right) \end{split}$$

So we see that d is coordinate-independent.

Question 7-27.

(a) If $\nabla f(p) = w_p$, then

$$(D_v f)(p) = \frac{d}{dt} \Big|_{t=0} f(p+tv)$$
$$= \sum v^i \frac{\partial f}{\partial x^i}$$
$$= \left(\sum v^i \frac{\partial}{\partial x^i}, \sum \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^i} \right)$$
$$= \langle v, w \rangle$$

Because $\langle v, w \rangle$ attains maximum value when v = cw for some c, we see that $\nabla f(p)$ is the direction in which f is changing the fastest at p.

(b)

$$df = \frac{\partial f}{\partial x^1} dx^1 + \frac{\partial f}{\partial x^2} dx^2 + \frac{\partial f}{\partial x^3} dx^3 = w_{\nabla f}$$

$$\begin{aligned} d(\omega_X) &= d(a^1 dx^1 + a^2 dx^2 + a^3 dx^3) \\ &= da^1 \wedge dx^1 + da^2 \wedge dx^2 + da^3 \wedge dx^3 \\ &= \sum_i \sum_j \frac{\partial a^i}{\partial x^j} dx^j \wedge dx^i \\ &= \left(\frac{\partial a^2}{\partial x^1} - \frac{\partial a^1}{\partial x^2}\right) dx^1 \wedge dx^2 + \left(\frac{\partial a^3}{\partial x^1} - \frac{\partial a^1}{\partial x^3}\right) dx^1 \wedge dx^3 + \left(\frac{\partial a^3}{\partial x^2} - \frac{\partial a^2}{\partial x^3}\right) dx^2 \wedge dx^3 \\ &= \eta_{\text{curl } X} \end{aligned}$$

$$d(\eta_X) = d(a^1 dx^2 \wedge dx^3 - a^2 dx^1 \wedge dx^3 + a^3 dx^1 \wedge dx^2)$$

$$= da^1 \wedge dx^2 \wedge dx^3 - da^2 \wedge dx^1 \wedge dx^3 + da^3 \wedge dx^1 \wedge dx^2$$

$$= \frac{\partial a^1}{\partial x^1} dx^1 \wedge dx^2 \wedge dx^3 - \frac{\partial a^2}{\partial x^2} dx^2 \wedge dx^1 \wedge dx^3 + \frac{\partial a^3}{\partial x^3} dx^3 \wedge dx^1 \wedge dx^2$$

$$= \left(\frac{\partial a^1}{\partial x^1} + \frac{\partial a^2}{\partial x^2} + \frac{\partial a^3}{\partial x^3}\right) dx^1 \wedge dx^2 \wedge dx^3$$

$$= (\operatorname{div} X) dx^1 \wedge dx^2 \wedge dx^3$$

(c) Now as $d \circ d = 0$, first of all $d \circ df = d(w_{\nabla f}) = \eta_{\operatorname{curl} \nabla f} = 0$, so we see that $\operatorname{curl} \nabla f = 0$. On the other hand, $d \circ d(w_X) = d(\eta_{\operatorname{curl} X}) = (\operatorname{div} \operatorname{curl} X) dx \wedge dy \wedge dz = 0$, we see that div $\operatorname{curl} X = 0$.

(d) It was shown in Spivak that if M is smoothly contractible to a point, then every closed form on M is exact. Now as star shaped open set U is smoothly contractible to a point, we see that forms of U are exact. Therefore, if curl X = 0, then $\eta_{\text{curl } X} = d(w_X) = 0$, so $w_X = df$ for some f, but $df = w_{\nabla f}$, so $X = \nabla f$ for some f. Similarly, if div X = 0, then $d(\eta_X) = (\text{div } X)dx^1 \wedge dx^2 \wedge dx^3 = 0$, so we see that $\eta_X = d(w_Y)$ for some w_Y . But $d(w_Y) = \eta_{\text{curl } Y}$, so we see that X = curl Y for some Y on U.