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Question 6-6.

Theorem 5 states that every C* integrable k-dimensional distribution A on M has an integral manifold.
So consider the distribution A in R™ x R™ defined by
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Note that A is spanned by the vector fields
X; = Zflk - yfori=1,...m
=1 o

We will first show that A is a C*° integrable k-dimensional distribution if and only if condition (*x) of
Theorem 1 is satisfied, and hence A has an integral manifold if and only if condition (%) is satisfied.
Let our integral manifold be a graph of a function a(rl, stm) = (@ (71, )y ey @71, o 7)), dee. the

integral manifold looks like {(71, ..., s, @ (71, ..., T ), .. ”(7“1, vy Tm)) i = (11, .., 7 ) € R™}, then being an
integral manifold of A translates to the conditions 3‘2 %Ot‘ 3‘21 + ot %W € A,, which means aitk = fk,
and so % = f;, which are precisely the differential equations that Theorem 1 solves. Thus we only need

to show that A is a C'* integrable k-dimensional distribution if and only if condition (*%) of Theorem 1 is
satisfied (which, together with the argument above, will prove Theorem 1).

We will verify that A is a C* integrable k-dimensional distribution if and only if condition (#x) of
Theorem 1 is satisfied. Now by proposition 4 we only need to check that the Lie bracket on the X; belongs
to A. We now compute
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Thus [X;, X,;] € A if and only if
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and as 4,7 are arbitrary, this is precisely condition (*x), and we have proved Theorem 1 from Theorem 5.

Question 6-8.

Define O‘(‘T7y) = (Cvl(x,y),OzQ(z,y)), and letting f1 = (u(x,y,al(a:,y),OzQ(x,y)),v(x,y,al(x,y),QQ(:r,y)))
and fo = (—v(z,y,al(z,y),a?(z,y)),u(z,y, o (x,y),a(z,y))), the differential equation listed in the prob-
lem translates to solving g—‘;‘ = f1 and g—‘; = f2. Now Theorem 1 tells us when this system of differential



equations have a solution: when fi, fo satisfies condition (*#). Thus it remains to check condition (*x).
Since 4,5 = 1,2 in our case, we see that we only need to check i = 1,5 = 2 (because condition (*x) is
automatically satisfied for ¢ = j and the case i =2,j = 1 is just —1 times the case i = 1,j = 2). Now
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Where the last equality follows from the Cauchy-Riemann relations of w,v. Thus () is satisfied, and hence
a is the solution to the differential equations listed above. Therefore (sorry, I am changing notations to

a = ¢) we conclude that the differential equation ¢'(z) = f(z,¢(z)) has a solution in a neighborhood of zg
with initial condition ¢(zp) = wy.

Question 7-2.

We want to show that A is not associative. To see this, we let w,n € Q' (V) and 0 € Q*(V). Then

wA(nAB) (v1,v2,v3,04) = w/\( > sgn(o)(ne® 9)”) (v1,v2,v3,v4)
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On the other hand
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The two expressions are not equal, because the first one sums over Sy ”three times”, while the second one
sums over S; "two times”. Thus we see that the A so defined is NOT associative.

Question 7-4.

(a) Let a,beV and c e QF(V), then for any vy, ..., v_o

a=(b=c)(v1,...,v5-2) = b=c(a, vy, ..., V5-2)
=c(b,a,v1,...,Vp-2)
=—c(a,b,v1,...,0p-2)
= —a—c(b,v1,...,V5-2)

= _b_‘(a_lc) (vla ey Uk—2)

Thus a-(b-c) = -b=(a—c).



(b) Let v1,...,v, be a basis of V and ¢1,...,¢, be the dual basis, then letting v; = X; we see that
Vi=(piy Ao A )Xoy ooy Xi) = @iy Ao Ay (X7, o, X)) = det(¢s, (X)), If § # iy for any 4., then we see
that the first column of this matrix is all 0, and hence the determinant is 0. On the other hand, if j = i,,
then we see that the first column of the matrix has a 1 in the a-th position, and 0 otherwise. Therefore the
determinant det(¢;, (X)) = (=1)*! * det M where M is obtained from taking out the first column and a-th
row in the matrix (¢; (X,)). However, detM is precisely ¢, A ... A gi. A ... A ¢y, (X2,..., X1.), and hence we
see that v;=(gi, Ao A i) = (1) iy Ao Ay, Ao Ay, when j = ig.

(c) We will use part (b) to prove this. Since QF(V') has basis {¢s, A ... A ¢y, 141 < ... <ix} and similarly
QY (V) has basis {¢;, A ... Ady, 141 < ... <i;}, and both sides of the equation
v=(w1 Aws) = (V=w1) Aws + (=1)Fwy A (v-ws)

)

are linear (in the ”v” entry, the "wy” entry, and "ws” entry), we can just verify it for v = v, for some r,
w1 = @iy Ao Ay, and wa = @5, A ... Ay, Then part (b) tells us that if r # iy, jo for any i, jo, then both
sides equal 0. On the other hand, if r = 4,, then

Op=(W1 Awz) = (1) iy A A i A A iy A Biy A A D,
= (1) i, A Abi Ao A ) A (D) A ADj,) +0
= (vp=w1) Awg + (—1)kw1 A (vp=ws)

where the last term in the last equation is 0, while if r = jg, then

vp=(wi Aw) = ()P AL A B Ay A A (EJ\B A Ny
=0+ (—1)’“(@»1 A A ) A (—1)5_1(<;5j1 A A qgj\ﬁ A NGj)
= (vy—w1) Aws + (=1)*wi A (v=ws)

where the first term in the last equation is 0. Thus we conclude that

’UA(wl /\WQ) = (v—'wl) N wo + (—1)kw1 A (’UJWQ)

Question 7-5.

Let F': M — R"™ be defined as F = (f!,..., f*) where f: M — R are smooth. Given p € M, let (z,Up) be a
coordinate system of M. Now f* form a coordinate system in a neighborhood U of p € M if and only if F| is
a diffeomorphism from U onto an open subset V' of R”, and this happens if and only if DF(p) is a nonsingular
matrix (by Inverse Function Theorem). Now dfy A ... Adf,(p) # 0 if and only if df; A ... A dfn(%» cees %) £0
(this follows from question 7-16, which will be proved later). But

dfy A A df, (%, %) - det(dfj (%)) - det (gf)

and this last expression is precisely det(DF(p)), and hence we see that dfy A ... Adf,(p) # 0 if and only if f?
form a coordinate system in a neighborhood U of p e M.

Question 7-6.

(a) For dim V =1 and 2, Q%(V) is O-dimensional and 1-dimensional, respectively, and hence every
w € Q%(V) is automatically decomposable. So suppose dim V = 3. Let €', €2, €3 be a dual basis for V, then



1 3 2

every w € Q%(V) can be written as ae' A €% + bel A €3 + ce? A €3. However,

((a+ e + e+ (E + c) 63) A (el +e? 4 (E) 63)
a a

b+c b+c b+c b+c
:(a+1)61/\62+(a+1)(—)61/\63+62/\el+(—)62/\63+(—-kc)eg/\el+(—+c)63/\62
a a a a

=ae' N2 +bet A+ AED

This shows that ae' Ae? +be! Ae®+ce? Aed = ((a+1)et + € + (2 +¢) e3) A (! + € + (2£¢) €%) is decomposable

as the wedge product of two elements in Q!(V'), and thus we conclude that for dim V < 3, every w € Q?(V)
is decomposable.

(b) Suppose ¢;,i = 1,...,4 are independent, and w = (¢1 A ¢2) + (d3 A ¢g). We will show that w is not
decomposable. We compute w A w.

wAw=((g1Ap2) + (P3APa)) A((P1 A D2) + (P34 Pa))
=201 NP2 NP3 APy

If w is decomposible, then w A w = 0, so we see that w cannot be decomposable. This shows that for dim
V >4 there are elements w € Q%(V) that is NOT decomposable.

Question 7-16.

(a) Since el (where I is an increasing multi-index of length k) forms a basis of QF(V), we can write
w=Y,crel. Now as w; = iy ajiv; (where i =1,...,k), we let T'= (;;) be the matrix consisting of entries
o, then w; = T; for all ¢ = 1,...,k. Then

w(wy, .., w) =w(Tvy, ..., Tvg)
= Zc;eI(Tvl, ey Tg)
T

= ZC[O&]
I

where o7 is the determinant of the k x k minor of T" obtained by selecting rows i1, ...,ix. On the other hand,
given 4y < ... < i, we have w(vi,,..., ;) = 21 clel(vm...,vik) = ¢ <...<ip,- Thus we see that w(ws,...,wg) =
Yreroar =Y rarw(vi, ...V ).

(b) If f: M — N is a C* function between n-manifolds, then f*(gdy’ A ... Ady™) = (go f)d(y™ o f) A
..Ad(y™ o f) (Since f* is linear, we will check only on basis elements dy’* A ... Ady’*). By part (a), a k-form
is determined by where it sends (v;,,...,v;,) for i; < ... <ij an increasing multi-index. Now

. . o d\_ O(y' o f)
(go f)d(y" o f)n...nd(y Of)(ale,...,axjk)—(g°f)det( p
Now since dz/t A ... /\da:j’“(am%, ey Mijk) =1, we see that

f*(gdy™ /\.../\dyi’“):Z(gOf)det( (8 7 f)) dz? A ... A da'*
J

and this is a generalization of Theorem 7. From what we proved in this part, letting f = Id, corollary 8 now
generalizes to: If (z,U) and (y, V) are two coordinate systems on M then

gdy™ A ... Ady't = Zg-det (aa(yjz))dle A AdzT®
= x



(c)

d(gdy“A...Adyik):dgAdy“A...Adyik:Z( ) Zd t(a(y ))d LN L
_ o(y™)\ (99 i . oW =)\ (99 , . 2 -
_i;;det( D035 ((9 Zd )/\dx /\.../\d;gﬂk_ZZdet pr ((%ido:)/\dx’ A A dpI

—det( (" ))Adzﬂl Ada?* = d (Z dt( (ym))dﬂm Adzﬂk)

So we see that d is coordinate-independent.

Question 7-27.

(a) If Vf(p) = wp, then

(Dyf)(p) = f(p+ tv)

dt
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Because (v, w) attains maximum value when v = cw for some ¢, we see that Vf(p) is the direction in which
f is changing the fastest at p.

(b)
Of 1 OF 4o, Of

af = ox! 0z? O0x3

—dx® =Wy f

d(wx) = d(a*dz* + a*da? + a®da®)

=da' A dx' +da® Adx? + da® A da?
9
_;;8

2 1 3 1 3 2
:(aa—aa)da:l/\de+(aa—aa)dxl/\dx?’+(aa—aa)dx2/\dx3

A dat

ozl  0x? ozt 0z ox? Oz

= Ncurl X

d(nx) = d(a‘dz? A da® - a*dx' A da® + a®dxt A dz?)

=da' Adz? A dz® - da® A dat Ada® + da® A dxt A da?

3
%dw Adz? A da? Zde Adzt Ada? +gzgdx3/\dxl/\dx2
da'  9a® 8(1

= (div X)dz' A dz® A dx®



(c) Now as dod =0, first of all dodf = d(wyy) = Neurt vy = 0, so we see that curl Vf =0. On the other
hand, do d(wx) = d(Mew1 x) = (div curl X)dz A dy A dz =0, we see that div curl X = 0.

(d) It was shown in Spivak that if M is smoothly contractible to a point, then every closed form on M is
exact. Now as star shaped open set U is smoothly contractible to a point, we see that forms of U are exact.
Therefore, if curl X =0, then neun x = d(wx) =0, so wx = df for some f, but df = wyy, so X = Vf for some
f. Similarly, if div X =0, then d(nx) = (div X)dz* Adz? A dx® = 0, so we see that nx = d(wy ) for some wy-.
But d(wy) = Neurl v, S0 we see that X = curl Y for some Y on U.



