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Question 5-4.

Suppose f : (−c, c) × U × V → Rn is C∞, where U, V ⊂ Rn are open, and let (x0, y0) ∈ U × V .
We define another function F : (−c, c) × U × V → Rn × Rn by taking F (t, x, y) = (y, f(t, x, y)). Let
π1, π2 be projection of Rn × Rn to the first and second factor respectively, then since π2 ◦ F = f is C∞

and π1 ◦ F (t, x, y) = y is also C∞, we see that F is C∞. We apply F to Theorem 2 (the existence of
solutions to ODE) in Spivak, we see that since F is C∞, then it follows that there exist a neighborhood
W of (x0, y0) such that F is bounded and Lipschitz, and hence by Theorem 2 (uniqueness by Theorem
3) there exist a number b > 0 such that for each (x, y) ∈ W there is a unique γ(x,y) : (−b, b) → U × V
with γ

′

(x,y)(t) = F (t, γ(x,y)(t)) and γ(x,y) = (x, y). However, if we denote γ(x,y)(t) = (α(x,y)(t), β(x,y)(t)),

then γ
′

(x,y)(t) = F (t, γ(x,y)(t)) and γ(x,y) = (x, y) translates to a system of equations α
′

(x,y)(t) = β(x,y)(t),

β
′

(x,y)(t) = f(t, α(x,y)(t), β(x,y)(t)) , and the condition α(x,y)(0) = x and β(x,y)(0) = y. But these, again,

translates to α
′′

(x,y)(t) = f(t, α(x,y)(t), α
′

(x,y)(t)), α(x,y)(0) = x, and α
′

(x,y)(0) = y. Which is what we wanted
to prove.

Question 5-9.

We will show that limh→0(φh)∗Yφ−h(p) = Yp. Let (U, x) be a coordinate chart around p, and denote
x = (x1, ..., xn). Now in coordintes, we see that (φh)∗ at φ−h(p) is the matrix

(φh)∗ =


∂φ1

h

∂x1 (φ−h(p)) · · · ∂φ1
h

∂xn (φ−h(p))
...

∂φn
h

∂x1 (φ−h(p)) · · · ∂φn
h

∂xn (φ−h(p))


and hence it sends Yφ−h(p) = (Y 1

φ−h(p)
, ..., Y nφ−h(p)

) to

n∑
i=1

 n∑
j=1

∂φih
∂xj

(φ−h(p))Y jφ−h(p)

∂

∂xi


Now note limh→0Y

j
φ−h(p)

= Y jp (as Y is a C∞ vector field) and limh→0
∂φi

h

∂xj (φ−h(p)) =
∂ limh→0 φ

i
h(φ−h(p))

∂xj = δij
where δij is the Kronecker delta (because limh→0 φh(φ−h(p)) is the identity function ). Thus we see that the
sum above simplifies to

n∑
i=i

Y ip
∂

∂xi
= Yp
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Question 5-10.

(a) We will show that LX(f · ω) = Xf · ω + f · LXω.

LX(f · ω)p(Xp) = lim
h→0

(φ∗hf · ω)p(Xp)− (f · ω)p(Xp)

h

= lim
h→0

f(φh(p))(φ∗hω)p(Xp)− f(p)(ω)p(Xp)

h

= lim
h→0

f(φh(p))(φ∗hω)p(Xp)− f(p)(φ∗hω)p(Xp) + f(p)(φ∗hω)p(Xp)− f(p)(ω)p(Xp)

h

= lim
h→0

f(φh(p))(φ∗hω)p(Xp)− f(p)(φ∗hω)p(Xp)

h
+ lim

h→

f(p)(φ∗hω)p(Xp)− f(p)(ω)p(Xp)

h

= lim
h→0

f(φh(p))− f(p)

h
(φ∗hω)p(Xp) + f(p) lim

h→

(φ∗hω)p(Xp)− (ω)p(Xp)

h

= Xf(p)ωp(Xp) + f(p)(LXω)p(Xp)

for any Xp in the tangent space (sorry bad notation, here Xp and X are not relavant). Thus we see that

LX(f · ω) = Xf · ω + f · LXω

(b) We will show that LX [ω(Y )] = (LXω)(Y ) + ω(LXY ).

LX [ω(Y )] = (LXω)(Y ) + ω(LXY ) =

= lim
h→0

ω(Y ) ◦ φh(p)− ω(Y )(p)

h

= lim
h→0

ωφh(p)(Yφh(p))− ωp(Yp)
h

= lim
h→0

ωφh(p)(Yφh(p))− ωφh(p)(φh∗Yp) + ωφh(p)(φh∗Yp)− ωp(Yp)
h

= lim
h→0

ωφh(p)(Yφh(p))− ωφh(p)(φh∗Yp)

h
+ lim
h→0

ωφh(p)(φh∗Yp)− ωp(Yp)
h

= lim
h→0

ωφh(p)(Yφh(p) − φh∗Yφ−hφh(p))

h
+ (LXω)(Y )(p) = ω(LXY )(p) + (LXω)(Y )(p)

So we see that LX [ω(Y )] = (LXω)(Y ) + ω(LXY ).

(c) If we change the definition, then we see that part (a) and part (b) becomes LX(f ·ω) = −Xf ·ω+f ·LXω
and LX [ω(Y )] = (LXω)(Y )− ω(LXY )

Question 5-12.

The Jacobi identity states
[Z, [X,Y ]] + [X, [Y, Z]] + [Y, [X,Z]] = 0

In the book it is established that [X,Y ] = XY = Y X. Thus given any f ∈ C∞(M), we see that

[Z, [X,Y ]] + [X, [Y,Z]] + [Y, [Z,X]](f)

= [Z, [X,Y ]]f + [X, [Y, Z]]f + [Y, [Z,X]]f

= [Z,XY − Y X]f + [X,Y Z − ZY ]f + [Y,ZX −XZ]f

= (Z(XY − Y X)− (XY − Y X)Z)f + (X(Y Z − ZY )− (Y Z − ZY )X)f + (Y (ZX −XZ)− (ZX −XZ)Y )f

= ZXY f − ZY Xf −XY Zf + Y XZf +XY Zf −XZY f − Y ZXf + ZY Xf + Y ZXf − Y XZf − ZXY f +XZY f

= 0
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Since this holds for every f ∈ C∞(M), we see that [Z, [X,Y ]] + [X, [Y,Z]] + [Y, [X,Z]] = 0.

Question 5-15.

(a) Since we have defined D for functions and vector fields, we will construct it for covariant vector
fields, and then for tensor fields of type (k, l). Given a covariant vector field ω, we will use property (3) to
define where D takes it. Let C(ω ⊗X) = ω(X) be a contraction, then we see by property (2) and (3) that
DC(ω ⊗X) = CD(ω ⊗X) = C(Dω ⊗X + ω ⊗DX), so D(ω(X)) = Dω(X) + ω(DX), and hence we define
Dω(X) = D(ω(X)) − ω(DX). Now we extend this to tensor fields of type (k, l). Since all tensor fields of
type (k, l) is a of the form ωi1 ⊗ ... ⊗ ωik ⊗ Xj1 ⊗ ... ⊗ Xjl , we extend D by property (2) R-linearly to all
tensor fields of type (k, l). Since an operator is determined by where it sends every element, our construction
will be the unique construction satisfying (1), (2), and (3). Thus we have a unique extension of D to an
operator taking tensor fields of type (k, l) to themselves satisfying (1), (2), and (3).

(b) We will check that DA(fY ) = f · DA(Y ) + DA(f) · Y . Now DA(fY ) = A(fY ), so (A(fY ))p =
Ap(f(p)Yp) = f(p)Ap(Yp), so DA(fY ) = f ·A(Y ) = 0 + f ·DA(Y ) = DA(f) ·Y + f ·DA(Y ). Now using part
(a), we see that there is a unique extension of DA satisfying (1), (2), (3).

(c) (DAω)p(Xp) = DA(ω(X))(p)− ωp((DAX)p) = 0− ωp((AX)p) = −ωp(Ap(Xp)) = −(A∗pωp)(Xp). So
we see that (DAω)p = −(A∗pωp).

(d) LfXV = [fX, V ] = fXV −V (fX) = fXV −V fX−fXV = f [X,V ]−V f ·X = fLXV −V f ·X. On
the other hand, we see that (DX⊗dfV )p = (X ⊗ df)p(Vp), we will figure out what (X ⊗ df)p(Vp) is by seeing
how the covectors act on it. Given any λp, we see that λp((X⊗df)p(Vp)) = λp(Xp)dfp(Vp) by definition, and
hence in coordinates we let dx1, ..., dxn be the local nowhere-dependent section associate to the coordinates
x1, ..., xn, then we see that dxi((X ⊗ df)p(Vp)) = dxi(Xp)dfp(Vp) = Xi

pVp(f) for all i = 1, ..., n, so we see

that (X ⊗ df)p(Vp) = Vp(f)
∑
Xi
p
∂
∂xi |p = Vp(f) ·Xp, and so we see that DX⊗dfV = V f ·X. Thus we have

LfXV = fLXV − V f ·X.

(e) If T is of type (2, 1), then we see that T can be written in coordinates as

T =
∑
k,l,m

T lmk dxk ⊗ ∂

∂xl
⊗ ∂

∂xm

and we write

A =
∑
i,j

Ajidx
i ⊗ ∂

∂xj

Then we will use property (2) to deduce that

(DAT ) =
∑
i,j

Aji
∑
k,l,m

T lmk dxk ⊗ dxi
(
∂

∂xl

)
⊗ ∂

∂xm
⊗ ∂

∂xj

+
∑
i,j

Aji
∑
k,l,m

T lmk dxk ⊗ ∂

∂xl
⊗ dxi

(
∂

∂xm

)
⊗ ∂

∂xj

−
∑
i,j

Aji
∑
k,l,m

T lmk dxk ⊗ ∂

∂xl
⊗ ∂

∂xm
⊗ dxk

(
∂

∂xj

)
So we see that

(DAT )βγα =
∑
l

Aβl T
lγ
α +

∑
m

AγmT
βm
α −

∑
j

AjαT
βγ
j
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Question 5-19.

(a) Suppose M is compact, then f−1(0) is a closed subset of a compact set, hence compact. Since 0 is a
regular value of f : M → R, we let p ∈ f−1(0), and using Theorem 2.9 we let (xp, Up) be a coordinate system
around p such that f ◦x−1p (a1, ..., an) = (a1). We do this for all p ∈ f−1(0), and we obtain {Up}p∈f−1(0) with
charts {xp}p∈f−1(0). Since f−1(0) ⊂ ∪p∈f−1(0)Up, by compactness there is a finite subcover {Upi}i=1,...,n,
which we denote the union by V . Now we let ψpi be a partition of unity subordinate to this finite cover,
and define a vector field at q ∈ V by

∑
q∈Upi

ψpi(q)(x
−1)∗(

∂
∂(xpi

)1
|xpi

(q)). Note that for each xpi , we have

f∗(x
−1
pi )∗(

∂
∂(xpi

)1
|xpi

(q)) = (f ◦ x−1pi )∗(
∂

∂(xpi
)1
|xpi

(q)) = d
dt |f(q) as f ◦ x−1pi projects the first component. Thus

we see that we have defined a vector field X on a neighborhood V of f−1(0) such that f∗X = d
dt . Now

we let φ be the flow of X and θ be the flow of d
dt . Now as f∗X = d

dt , we see that for some t such
that φt and θt exists, we have θt ◦ f(p) = f ◦ φt(p) which is equivalent to θ(f(p), t) = f(φ(p, t)) (here
θ(f(p), t) = f(p) + t because the flow is d

dt ). So in particular, we see that around p ∈ f−1(0), the condition
θ(f(p), t) = f(φ(p, t)) tells us that we have a diffeomorphism φ : (−t, t) × f−1(0) → f−1((−t, t)) such that
f(φ(p, t)) = θ(f(p), t) = θ(0, t) = 0 + t = t.

(b) In general, if M is compact and q ∈ N is a regular value of f : M → N , then following a very similar
argument, we can prove that there is a neighborhood U of q and a diffeomorphism φ : f−1(q)×U → f−1(U)
with f(φ(p, q′)) = q′. Again we can pick coordinates (x, V ) around p ∈ f−1(q) and (y,W ) around q such that
y ◦ f ◦ x−1(a1, ..., an) = (a1, ..., am). Then we can define m commuting vector fields x−1∗ ( ∂

∂x1
), ..., x−1∗ ( ∂

∂xm
)

on each V , and using partition of unity to glue each of them, we get m commuting independent vector fields
X1, ..., Xk such that (yf)∗X

i = ∂
∂xi

. Then in coordinates, we define θi to be the flow of (y−1)∗
∂
∂xi

and φi
to be the flow of Xi, we define Ψ = (φ1)t1 ◦ (φ2)t2 ◦ ... ◦ (φm)tm where φi is defined on ti (here the orders do
not matter as these vector fields commute), then similarly to part (a), we see that Ψ : f−1(q)×U → f−1(U)
is a diffeomorphism (where U ⊂ y−1((−t1, t1) × ... × (−tm, tm))) and if q′ = y−1(h1, ..., hm) ∈ U then
f ◦Ψ(p, q′) = f ◦ (φ1)h1 ◦ (φ2)h2 ◦ ... ◦ (φm)hm(p) = (θ1)h1 ◦ (θ2)h2 ◦ ... ◦ (θm)hm(f(p)) = y−1(h1, ..., hm) = q′.

Question 6-1.

(a) We will show that a k-dimensional distribution on M is just a subbundle of TM . By definition, a
k-dimensional distribution on M is a function Ψ : p 7→ ∆p where ∆p is a k-dimensional subspace of TpM ,
and for any neighborhood U and k vector fields X1, ...Xk such that X1(q), ..., Xk(q) are a basis for ∆q for all
q ∈ U . First of all, this defines a k-plane bundle with local trivializations induced from X1, ..., Xk (because
X1, ..., Xk are nowhere dependent local sections of the tangent bundle, and we use question 3.7 of HW2).
Now as the diagram

∆
i
> TpM

M
∨ 1M

> M
∨

commutes, and linearity on the fiber holds because the map i is an inclusion, we see that a k-dimensional
distribution on M is actually a subbundle.

(b) We define a smooth subbundle to be a subbundle such that the (i, 1B) is a smooth map. Suppose a k-
dimensional distribution on M is C∞, then let X1, ..., Xk be a smooth nowhere dependent local sections of ∆
defined on a neighborhood U of p, then we can extend these into a smooth local frame, and again by question
3.7 of HW2 we see that there is a local trivialization Φ : π−1(U) → U × Rk defined by Φ(

∑
i a
i(Xi)q) =

(q, (a1, ..., ak)), which is smooth because all the Xi are. On the other hand, let Φ′ : U × Rn → π
′−1(U) be

the smooth local trivialization of TM , the tangent bundle, then we see that Φ′ ◦Φ is a smooth map, which,
on π−1(U) is the inclusion map. Thus a smooth k-dimensional distribution on M is a smooth subbundle.
On the other hand, if the inclusion is a smooth map, then the k-dimensional distribution on M is a smooth
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distribution because for any p we can just take the smooth local trivializations on U containing p, and then
3.7(c) shows that these are smooth nowhere dependent sections.

Question 6-2.

(a) Referring back to Theorem 5.2, we let x0 = α(0, 0, ..., 0, 0), then as f2 is C∞, it is Lipschitz, so for
some a > 0, f2 automatically satisfies condition (1) and (2) in Theorem 5.2 on B̄2a(x0). Then Theorem
5.2 states that for all x ∈ Ba(x0) there is a unique β2 : (−b, b) → V such that β2(0) = x and β

′

2(t) =
f2(t1, t, 0, ..., 0, β2(t)). We can pick ε1 small enough such that α(t1, 0, ..., 0) ∈ B̄a/2(x0) for all |t1| < ε1 (we
can do this by continuity of α(t, 0, 0, ..., 0) = β1(t)). Then for |t1| < ε1 by theorem 5.2 we let ε2 = b defined
above, then β2(t) with initial condition β2(0) = α(t1, 0, ..., 0) is defined for all |t| < ε2. This justifies the
”pick ε1 small enough” statement.

(b) Since in the proof we construct the solution α by solving n first order differential equation in n-steps
(each step we solve one first order differential equation, the solution of which is used in the next step), by
Theorem 5.3, which proves the uniqueness of solution for first order differential equations, we see that α is
unique because in each step the solution is.
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