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Question 5-4.

Suppose f : (—¢,¢) x U x V. — R™ is C*°, where U,V C R" are open, and let (zg,y0) € U x V.
We define another function F' : (—¢,¢) x U x V. — R™ x R™ by taking F(t,x,y) = (y, f(t,z,y)). Let
w1, T2 be projection of R™ x R™ to the first and second factor respectively, then since mo o F' = f is C'*®
and 71 o F(t,z,y) = y is also C*°, we see that F' is C*°. We apply F to Theorem 2 (the existence of
solutions to ODE) in Spivak, we see that since F' is C'*°, then it follows that there exist a neighborhood
W of (zg,yo) such that F' is bounded and Lipschitz, and hence by Theorem 2 (uniqueness by Theorem
3) there exist a number b > 0 such that for each (z,y) € W there is a unique (5, : (=b,0) = U x V
with V(z,y)(t) = F(t, %,y (1) and vz, = (2,y). However, if we denote (g ) (t) = (Q(z,y) (1), By (1)),
then 'y(w)y)(t) = F(t, Y@y (t) and (5, = (z,y) translates to a system of equations Yy (t) = Blay (1),
ﬁ(m,y)(t) = f(t, () (1), Bz,y)(t)) , and the condition a(,,)(0) = = and B(,,)(0) = y. But these, again,
translates to o/(/x,y)(t) = [(t, oz (1), o/(x,y)(t)), Q(z,4)(0) = z, and oz(w ) (0) =y. Which is what we wanted
to prove.

Question 5-9.

We will show that limp,0(¢n)«Ys_,») = Yp. Let (U,z) be a coordinate chart around p, and denote

x = (z1,...,2"). Now in coordintes, we see that (¢p). at ¢_p(p) is the matrix
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Now note limhﬁngih(p) =Y/ (as Y is a C* vector field) and limy, o %(qb,h(p)) = alim'ﬁoaqf;((b’h(p)) = 0}

where 4% is the Kronecker delta (because limp, o ¢n(¢—n(p)) is the identity function ). Thus we see that the

sum above simplifies to
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Question 5-10.

(a) We will show that Lx(f-w)=Xf -w+ f- Lxw.

Lc(f - w)y(X,) = lim (PaS = @p(Xp) = (- @)p(Xy)
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Py n (onw)p(Xp) + f(p) léf
= X f(p)wp(Xp) + f(p)(Lxw)p(Xp)
for any X, in the tangent space (sorry bad notation, here X, and X are not relavant). Thus we see that

Lx(f-w)y=Xf-w+f Lxw

h

(b) We will show that Lx[w(Y)] = (Lxw)(Y) +w(LxY).
Lx[w(Y)] = (Lxw)(Y) + w(LxY) =
w(Y) o én(p) = w(Y)(p)

= 1.
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So we see that Lx[w(Y)] = (Lxw)(Y) + w(LxY).

(c) If we change the definition, then we see that part (a) and part (b) becomes Lx (f-w) = =X f.w+f-Lxw
and Lx[w(Y)] = (Lxw)(Y) —w(LxY)

Question 5-12.

The Jacobi identity states
[Z7 [Xv Y]] + [Xv [Y, Z” + [Y, [Xv Z]] =0

In the book it is established that [X,Y] = XY = Y X. Thus given any f € C*°(M), we see that
1Z, (X, Y]]+ [X, [V, Z]] + [, [Z, X]](f)
Z XY+ (X, Y 2]+ Y (2, XT)f
Z,XY -YX|f+[X,YZ-ZY|f+[Y,ZX — XZ|f
= (Z(XY - YX)— (XY ~Y X)) f+(X(YZ - 2Y)— (YZ - ZY)X)f + (Y (ZX — XZ) — (ZX — XZ2)Y)f
IXYf—ZYXf - XYZf+YXZf+XYZf -~ XZYf-YIXf+IYXf+YIXf-YXZf—ZXYf+XZYf
0

=
=
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Since this holds for every f € C°°(M), we see that [Z, [X, Y]]+ [X, [V, Z]] + [V, [X, Z]] =
Question 5-15.

(a) Since we have defined D for functions and vector fields, we will construct it for covariant vector
fields, and then for tensor fields of type (k,1). Given a covariant vector field w, we will use property (3) to
define where D takes it. Let C(w ® X) = w(X) be a contraction, then we see by property (2) and (3) that
DCw@X)=CDw®X)=CDw® X +w® DX), so D(w(X)) = Dw(X)+w(DX), and hence we define
Dw(X) = D(w(X)) —w(DX). Now we extend this to tensor fields of type (k,1). Since all tensor fields of
type (k,1) is a of the form w;, ® ... ® w;, ® X1 @ ... ® X7, we extend D by property (2) R-linearly to all
tensor fields of type (k,). Since an operator is determined by where it sends every element, our construction
will be the unique construction satisfying (1), (2), and (3). Thus we have a unique extension of D to an
operator taking tensor fields of type (k,[) to themselves satistying (1), (2), and (3).

(b) We will check that Ds(fY) = f - Da(Y)+ Da(f)-Y. Now Da(fY) = A(fY), so (A(fY)), =
Ap(f(P)Yp) = f(p)Ap(Yy), s0 Da(fY) = f-A(Y) =0+ f-Da(Y) = Da(f)-Y + f-Da(Y). Now using part
(a), we see that there is a unique extension of D4 satisfying (1), (2), (3).

() (Daw)p(Xp) = Da(w(X))(p) —wp((DaX)p) = 0= wp((AX),) = —wp(Ap(Xp)) = *(A;Wp)(Xp)- So
we see that (Daw), = —(Ajwp).

(d) LyxV = [fX,V] = fXV-V(fX) = fXV VX~ fXV = fIX,V]-Vf-X = fLxV—Vf-X. On
the other hand, we see that (DxgarV)p, = (X @ df),(V},), we will figure out What (X ®@df),(V,) is by seeing
how the covectors act on it. Given any A,, we see that A\,(X @df),(V,)) = A\p(X,)dfp(V,) by definition, and
hence in coordinates we let da?, ..., dz™ be the local nowhere-dependent section associate to the coordinates
z',..,x", then we see that da'((X @ df),(V,)) = da'(X,)df,(V,) = XLV, (f) for all i = 1,...,n, so we see
that (X @ df),(Vp) = Vo (f) ZX;agz lp = Vu(f) - Xp, and so we see that DxgqV = V f - X. Thus we have
LixV = fLxV - Vf-X.

(e) If T is of type (2,1), then we see that T' can be written in coordinates as
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So we see that

(DaT)Y =Y AT +> AT =" AT
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Question 5-19.

(a) Suppose M is compact, then f~1(0) is a closed subset of a compact set, hence compact. Since 0 is a
regular value of f : M — R, we let p € f~1(0), and using Theorem 2.9 we let (z,, U,) be a coordinate system
around p such that fox,'(a',...,a") = (a'). We do this for all p € f~1(0), and we obtain {Up},c-1(0) with
charts {xp}pef-1(0). Since f71(0) C Upes—1(0)Up, by compactness there is a finite subcover {Up, }i1,...n,
which we denote the union by V. Now we let v,,, be a partition of unity subordinate to this finite cover,
and define a vector field at ¢ € V' by quUlﬂi Up, (q)(a:—l)*(a(%pi)lh”(q)). Note that for each z,,, we have

f*(x;il)*(a(%mum(q)) =(fo x;l)*(ﬁi)lum (@) = %|4q) as fox,! projects the first component. Thus
we see that we have defined a vector field X on a neighborhood V of f~!(0) such that f.X = %. Now
we let ¢ be the flow of X and 6 be the flow of %. Now as f, X = %, we see that for some ¢ such
that ¢; and 6, exists, we have 0; o f(p) = f o ¢¢(p) which is equivalent to 0(f(p),t) = f(¢(p,t)) (here
0(f(p),t) = f(p) +t because the flow is %). So in particular, we see that around p € f~1(0), the condition
0(f(p),t) = f(é(p,t)) tells us that we have a diffeomorphism ¢ : (—t,t) x f=1(0) — f~1((—t,t)) such that
f(o(p, 1)) = 0(f(p),t) = 0(0, 1) =0+t =1t

(b) In general, if M is compact and ¢ € N is a regular value of f : M — N, then following a very similar
argument, we can prove that there is a neighborhood U of q and a diffeomorphism ¢ : f~1(q) x U — f~1(U)
with f(¢(p,q')) = ¢'. Again we can pick coordinates (x, V) around p € f~1(¢) and (y, W) around ¢ such that
yo fox t(a,...,a") = (a',...,a™). Then we can define m commuting vector fields 96;1(8%1)7 ...,x;l(afm)
on each V| and using partition of unity to glue each of them, we get m commuting independent vector fields
X1 ..., X% such that (yf).X" = 8%1" Then in coordinates, we define 6; to be the flow of (y‘l)*a%i and ¢;
to be the flow of X%, we define ¥ = (¢1)¢, 0 (¢2), © ... © (¢ )s,, Where ¢; is defined on ¢; (here the orders do
not matter as these vector fields commute), then similarly to part (a), we see that ¥ : f~1(q) x U — f~1(U)
is a diffeomorphism (where U C y~'((—t1,t1) X ... X (=tm,tm))) and if ¢ = y~1(h1,...;hy) € U then

fo \I](pa ql) =fo (¢1)h1 © (¢2)h2 ©...0 (¢m)hm (p> = (al)hl o (92)712 0..0 (em)hm (f(p)) = y_l(hh RE hm) = q/'

Question 6-1.

(a) We will show that a k-dimensional distribution on M is just a subbundle of TM. By definition, a
k-dimensional distribution on M is a function ¥ : p — A, where A, is a k-dimensional subspace of 1T}, M,
and for any neighborhood U and k vector fields X1, ... X}, such that Xi(q), ..., Xx(q) are a basis for A, for all
g € U. First of all, this defines a k-plane bundle with local trivializations induced from Xj, ..., X} (because
X1, ..., Xk are nowhere dependent local sections of the tangent bundle, and we use question 3.7 of HW2).
Now as the diagram

A—>T,M

commutes, and linearity on the fiber holds because the map ¢ is an inclusion, we see that a k-dimensional
distribution on M is actually a subbundle.

(b) We define a smooth subbundle to be a subbundle such that the (¢, 1) is a smooth map. Suppose a k-
dimensional distribution on M is C'°°, then let X7, ..., X} be a smooth nowhere dependent local sections of A
defined on a neighborhood U of p, then we can extend these into a smooth local frame, and again by question
3.7 of HW2 we see that there is a local trivialization ® : 771(U) — U x R¥ defined by (3, a'(X;),) =
(¢, (@, ...,a*)), which is smooth because all the X; are. On the other hand, let ® : U x R” — 7 ~*(U) be
the smooth local trivialization of T'M, the tangent bundle, then we see that ®' o ® is a smooth map, which,
on 7~ 1(U) is the inclusion map. Thus a smooth k-dimensional distribution on M is a smooth subbundle.
On the other hand, if the inclusion is a smooth map, then the k-dimensional distribution on M is a smooth



distribution because for any p we can just take the smooth local trivializations on U containing p, and then
3.7(c) shows that these are smooth nowhere dependent sections.

Question 6-2.

(a) Referring back to Theorem 5.2, we let zo = «(0,0,...,0,0), then as fy is C, it is Lipschitz, so for
some a > 0, fo automatically satisfies condition (1) and (2) in Theorem 5.2 on Ba,(z0). Then Theorem
5.2 states that for all 2 € By,(xq) there is a unique Sy : (—b,b) — V such that 8(0) = = and f,(t) =
fa(t1,t,0,...,0, B2(t)). We can pick €; small enough such that a(t!,0,...,0) € Ba/g(xo) for all |t1] < €1 (we
can do this by continuity of «(t,0,0,...,0) = 51(¢)). Then for |t;| < €; by theorem 5.2 we let ea = b defined
above, then (;(t) with initial condition B2(0) = a(t!,0,...,0) is defined for all |¢| < €. This justifies the
”pick €; small enough” statement.

(b) Since in the proof we construct the solution « by solving n first order differential equation in n-steps
(each step we solve one first order differential equation, the solution of which is used in the next step), by
Theorem 5.3, which proves the uniqueness of solution for first order differential equations, we see that « is
unique because in each step the solution is.



