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Question 4-2.

Suppose f,g: M — R are C°, then given any point p € M and X, € T, M,

d(f9)p(Xp) = Xp(fg) = (Xpf)g + f(Xpg)
= dfp(Xp)g + fdgp(Xp)

where the second equality follows because X, is a derivation. So we see that d(fg), = g df, + f dg, for all
p, and hence d(fg) =g df + f dg

Question 4-4.

(a) Suppose that vy, ...,v, and wy, ..., w, are basis for V which are equally oriented, i.e. the transition
matrix (B?) such that v; = Zj Blw; has positive determinant. Then consider the dual basis v7,..., v},
and wj,...,w} for V* corresponding to v1,...,v, and ws,...,w,. We see that wj(v;) = w,’;(Z] Blw;) =
> Blw(wy) = BE. Thus we see that w = >, BFv;. Therefore the transition matrix for the dual basis

vy, ..., vy and wi, ..., w; are the transpose of the original matrix (Bf)T Now the determinant of the transpose
of a matrix is equal to the determinant of the original matrix. Thus we see that the dual basis v, ..., v} and
wy, ...,w), are equally oriented.

(b) The previous part of this question shows that if a linear isomorphism ¢ : (V,u) — (W,n) is order
preserving, then letting vy, vs, ..., v, be a basis of V such that [vy,...,v,] = p (then f(vy1), ..., f(vy,) is a basis
for W and we know [f(v1), ..., f(vn)] = n), we see that g* : (W*, ') — (V*, /) where [f(v1)*, ..., f(vn)*] =7
and [v],...,v%] = p’ is order perserving. Suppose £ : E — M is an orientable bundle, and let u be an
orientation of the top space . Then given any trivialization ¢ of £ on an open subset U C M such that
¢ is order preserving on each fibre, we have an induced trivialization ¢ = (¢*)~! for £€* on U which is also
order preserving on each fibre (given we pick the orientation n on E* such that the dual of a basis in p is in
n). Thus we conclude that £ is orientable if and only if £* is orientable.

Question 4-6.

(a) We will show that under the natural isomorphism V' — V* by sending iy (v)(A) = A(v), the following
diagram commutes:

V ZV; V**
fl f**l
W ZW; W**

Now suppose v € V, then following the lower-left arrows we see that iy o f(v) € W** takes any X € W* to

iw o f()(N) = N(f(v)).



On the other hand, following the top-right arrows we see that f** o iy (v) € W** takes any A € W* to
f* oiy(v)(A) =iy (v)(f*A) by definition of f** being a dual to f*. But iy (v)(f*A) = (f*N)(v) = A(f(v)).
Thus we see that, when comapring to the previous paragraph, iy o f(v) = f** oiy(v) and so the diagram
commutes.

(b) We will show that there does not exist isomorphisms iy : V' — V* such that the following diagram
commutes:

v sy

f i f *T
i

W % W
We will show that this does not even work for V= R. Let e € R be the standard basis for R, and let e* be the
dual basis. Suppose ig : R — R* takes e — ce*. Then if the diagram above is to commute for all f : R — R,
we let f(e) = c'e, and follow the diagram. If we go through the top arrow, then we see that e — ce*, while if
we go through the three arrows (the side arrows and the bottom arrow), then we found that e — ¢'cf*(e*).
However, when evaluated at e, we see that ce*(e) = ¢ and dcf*(e*)(e) = ce*(f(e)) = dce*(de) = 'cc.
Thus we see that ¢ has to satisfy ¢’c¢’ = ¢ for all ¢ € R. In R, no such ¢ can possibly exist, so we conclude
that there are NO isomorphism iy : V' — V* making the above diagram commute.

Question 4-7.

(a) The identity functor satisfies F'(1y) = 1y and F(go f) = go f = F(g)o F(f) essentailly by definition.

(b) Let 1y be the identity function on V, then F(1y) = 13*. We will use part (e) to do this problem.
Since V** = (V*)*, we see by part (e) that 13* = (1{,)* = (1y+)* = ly«-, so i}’ is the identity function on
V**. Nowlet f: W — Z and g : V — W, then consider F(f og) = (f o g)**. Again by part (e), since
(fo0)™ = ((f09))* = (" 0 f)* = f* 0. Thus we sce that F(f o g) = F(f) o F(g), and 50 F is a
covariant functor.

(c) By definition F(1y)(T)(A1, .., An) = T(A o 1y, .. 0 1y) = T(A1,..., \n), and so we see that
F(1y) = 1z, (v). On the other hand, F(f o g)(T)(A1,...; A\n) = (T)(A1o fog,...Ano fog)=F(9)(T)(A1o
foos Ao ) =(F(f)o F(9))(T)(A, ..., An), and hence F(f og) = F(f)o F(g). So F is a covariant functor.

(d) Suppose F is a functor and f : V — W is an isomorphism. We will show that F(f) : F(V) — F(W)
(suppose F' is covariant) is an isomorphism. The proof of the case when F contravariant is similar. Note
that F(f) o F(f™') = F(fo f™') = 1pw) and F(f~') o F(f) = F(f~' o f) = 1p) and so we see that
F(f) is a morphism in the target category from F(V) — F(W) with inverse F(f~!), and hence F(f) is an
isomorphism in the target category.

(e) Let 1y be the identity function on V, then F(1y) = 1j,. Then ij,w(v) = w(iyv) = w(v) for all
weV*andv €V, soij,w=w for all w € V*, and hence ij, =iy«. Nowlet f: W = Zandg:V — W,
then consider F'(f og) = (f o g)*. Suppose v € V* and z € Z, we see that (f o ¢)*(v')(z) =v'(foyg(z)) =
' (g(2)) = g* o f*'(2),80 F(fog)=(fog)*=g* o f*=F(g)o F(f). So F is a contravariant functor.

(f) The verification follows essentially by part (e). F(1y) = 1% : T*(V) — T*(V) by sending F(1y )T (v1, ...

T(ly(v1),...,1y(vx)) = T(v1,...,v), so it maps T + T and hence F(1y) is the identity on T*(V).

On the other hand, F(f o ¢)T(vi,...,vx) = T((f o g)(v1),..., (f 0 9)(vn)) = F(f)T(g(v1),...,9(vy)) =
F(g) o F(f)T(v1,...,vs). Thus F(fog) = F(g)o F(f), and hence F is a contravariant functor.

Question 5-3.

We will let the complete metric space be just R with the regular metric, and we will construct a function
such that d(f(z), f(y)) < d(z,y) for all z,y € R, but f has no fixed point. Let ¢(t) = e~ for t # 0 and



#(0) = 0. Consider the function
f@) = [ ot + v
0

Since ¢(t) is continuous (thus integrable), we see that f(z) is well defined and continuous. Now since ¢(t) < 1
for all t € R, let z,y € R and assume without loss of generality that = > y, then

/yz ¢(t)dt‘ < /yw|¢(t)|dt< /ym 1dt = |z — 9

/Ooo(l—e—fz)dtz\/%

T
/ (1—67ﬁ)dt<ﬁforallx20
0

[f (@) = f(y)l =

However, as

we see that

and so

x</ e~ =dt + /7 = f(z) for all 2 > 0
0

Similarly we can verify that f(z) > « for all < 0. Thus f(z) > z for all z € R and so f has no fixed
point. Thus in the complete metric space R with the regular metric, there exist a function f(x) such that
d(f(z), f(y)) < d(z,y) for all z,y € R, but f has no fixed point.

Question 1.

Suppose w € T*M and (z,U) is a chart on M, then in local coordinates,

n

w(p) =Y wi(p)da'],

=1

Now given any integer k > 0, we will show that w is C* if and only if w; are C* for all i. Let (z,U) be a
chart on U and let ® : 7= 3(U) — U x R™ be the function that take &dz‘|, — (p, (&1, ...,&n)), then we see
from our contruction of the smooth structure on T*M that ¥ = (x x Id) o ® : 7~ }(U) — R?" by mapping
&dzt|, — (21 (p), ..., 2™ (p), &1, -y &n) is a chart on T* M. So in the two charts (z,U), (¥, 7~ 1(U)), we see that
the coordinate representation of w, ¥ ow o x~!, maps (z!(p),...,x"(p)) — (z*(p), ..., 2™ (p), w1 (p), ..., wn ().
So in the coordinate representation, it is clear that w is smooth if and only if w; are smooth for all <.

Question 2.

We will show that the ~ defined as in the question is an equivalence relation. First of all, (p,a,v) ~
(p,a,v) because p = p and v = (Id) - v = gaa(p)v. Secondly, if (p,a,v) ~ (¢,8,w), then p = ¢ and
w = gga(p)v, but the ¢ = p and gog(P)w = gap(p) © gaa(P)v = (Id) - v = v, so (¢,5,w) ~ (p,a,v).
Lastly, suppose (p, o, v) ~ (¢, 8,w) and (g, 8,w) ~ (r,7,x), then we see that p = ¢ =7, w = gga(p)v, and
x = gys(p)w. Now by property (c), we see that © = g,3(p) © gga(P)V = gya(p)v, so (p,a,v) ~ (r,7,z). Thus
~ is an equivalence relation.

Let £ = {(p,o,v) € M x I xR¥ : p € U,} and define E = E/ ~. Then on each fiber E, = {[p, a,v] € E},
we define [p, o, v]+[p, B, w] = [p, @, v+ gapw] and c[p, o, v] = [p, @, cv]. Addition is well defined because given
any other representation [p,a’,v'] = [p,a,v] and [p, 8/, w'] = [p, 8, w], we see that [p,a’,v'] + [p, 5/, w'] =
[p, ;v + garpw'] = [p, @ gaar V' + Jaa'Gorp '] = [P, @,V + GaarV' + Gaargarprgs pw] = [Py, v + gapw] =
[p,a,v] + [p, B,w]. Similarly, if [p,o/,v'] = [p,a,v], then c[p,a/,v'] = ¢[p,a’,v']. So we see that E, has a
well-defined vector space structure.



Question 3.

_ . ty! t
The map £y 0 15" : (Us NUs) X RY = (Uy N Us) x R by mapping (p,0) = [p, B,0] = [p, @, gap(p)e]
(D, 9gap(P)v). Now as gap : UpNUg — GL(n,R) is C*° and matrix multiplication in polynomial in its entries
(so matrix multiplication is also smooth), we see that ¢, o tgl is a smooth map. Similarly we see that
tgotyt = (too t;l)_l is a smooth map (since we can just interchange o and § in the above argument), so
ty © t,gl is a diffeomorphism.

Question 4.

From the previous question, t,, otg1 is a diffeomorphism for all «, . Given any p, we let p € U, for some
Ua. Let (¢,,V,) be a chart in M such that V,, C U,, and define a map ¥, : 771(V,) — ¢(V,) x R to be the
composition (¢, x Id)ot,. Note that ¥, is a bijective map, and its image is open in R™ x R¥. Now given any
two such W, and W, (where g € Up), if V,NV, # 0, we see that W00 ' = (¢, x Id)otsot;" (¢gx Id)~*. Since
(opxId),ta otgl, and (¢, x Id)~! are C* diffeomorphisms, we see that \IJPO\I/;1 is a C*° diffeomorphism. So
we first define an open basis on E to be sets of the form ¥, (V x R¥) for some open set V € R™. Then with
this topology on E, we see that ¥, is a homeomorphism to an open subset of R™ x RF under this topology.
The condition that ¥, o U ! is a C> diffeomorphism tells us that {(x~'(V,), ¥;)} form compatible charts.
So taking the maximal atlas containing these, we have a C'°° structure on F.

The map 7 : E — M is smooth because in coordinates (¢, V,) and (¥, 7~ (V})), the map ¢, omo W !
maps (gbzl)(a), e O (@), vy ey v) (qb,lj(a), -y ®p(a)), which is C*°. On the other hand, ¢, is a smooth map
because in coordinates (W, 7~ *(V,)) and (V, x R¥, ¢, x Id), the map ¢, X Idot, 0 W, ! is the identity map,
which is clearly C*°. Thus £ — B is a smooth vector bundle with smooth local trivialization t.

Question 5.

Suppose 7' : E' — M is a bundle that has the same collection of trivialization neighborhoods {U,} and
the same transition map such that E' — M is smooth and ¢, are smooth local trivializations, then using the
fact that t, is a diffeomorphism onto its image (verified in the previous part), we see that t;1ot, : E — E’
(where the first ¢! is the map for E and t,, is considered for E’) is a diffeomorphism. So we see that locally £
and E’ are diffeomorphic, and hence E is diffeomorphic to E’. The fact that this diffeomorphism commutes
over M (i.e. 7 =7 ot ot,) follows from the contruction. Thus we see that E/ — M is isomorphic as a
vector bundle to £ — M.



