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Question 4-2.

Suppose f, g : M → R are C∞, then given any point p ∈M and Xp ∈ TpM ,

d(fg)p(Xp) = Xp(fg) = (Xpf)g + f(Xpg)

= dfp(Xp)g + fdgp(Xp)

where the second equality follows because Xp is a derivation. So we see that d(fg)p = g dfp + f dgp for all
p, and hence d(fg) = g df + f dg

Question 4-4.

(a) Suppose that v1, ..., vn and w1, ..., wn are basis for V which are equally oriented, i.e. the transition
matrix (Bji ) such that vi =

∑
j B

j
iwj has positive determinant. Then consider the dual basis v∗1 , ..., v

∗
n

and w∗1 , ..., w
∗
n for V ∗ corresponding to v1, ..., vn and w1, ..., wn. We see that w∗k(vi) = w∗k(

∑
j B

j
iwj) =∑

j B
j
iw
∗
k(wj) = Bki . Thus we see that w∗k =

∑
k B

k
i v
∗
i . Therefore the transition matrix for the dual basis

v∗1 , ..., v
∗
n and w∗1 , ..., w

∗
n are the transpose of the original matrix (Bji )

T . Now the determinant of the transpose
of a matrix is equal to the determinant of the original matrix. Thus we see that the dual basis v∗1 , ..., v

∗
n and

w∗1 , ..., w
∗
n are equally oriented.

(b) The previous part of this question shows that if a linear isomorphism g : (V, µ) → (W, η) is order
preserving, then letting v1, v2, ..., vn be a basis of V such that [v1, ..., vn] = µ ( then f(v1), ..., f(vn) is a basis
for W and we know [f(v1), ..., f(vn)] = η), we see that g∗ : (W ∗, η′)→ (V ∗, µ′) where [f(v1)∗, ..., f(vn)∗] = η′

and [v∗1 , ..., v
∗
n] = µ′ is order perserving. Suppose ξ : E → M is an orientable bundle, and let µ be an

orientation of the top space E. Then given any trivialization φ of ξ on an open subset U ⊂ M such that
φ is order preserving on each fibre, we have an induced trivialization ψ = (φ∗)−1 for ξ∗ on U which is also
order preserving on each fibre (given we pick the orientation η on E∗ such that the dual of a basis in µ is in
η). Thus we conclude that ξ is orientable if and only if ξ∗ is orientable.

Question 4-6.

(a) We will show that under the natural isomorphism V → V ∗ by sending iV (v)(λ) = λ(v), the following
diagram commutes:

V
iV
> V ∗∗

W

f
∨ iW

> W ∗∗

f∗∗
∨

Now suppose v ∈ V , then following the lower-left arrows we see that iW ◦ f(v) ∈W ∗∗ takes any λ′ ∈W ∗ to
iW ◦ f(v)(λ′) = λ′(f(v)).
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On the other hand, following the top-right arrows we see that f∗∗ ◦ iV (v) ∈ W ∗∗ takes any λ ∈ W ∗ to
f∗∗ ◦ iV (v)(λ) = iV (v)(f∗λ) by definition of f∗∗ being a dual to f∗. But iV (v)(f∗λ) = (f∗λ)(v) = λ(f(v)).
Thus we see that, when comapring to the previous paragraph, iW ◦ f(v) = f∗∗ ◦ iV (v) and so the diagram
commutes.

(b) We will show that there does not exist isomorphisms iV : V → V ∗ such that the following diagram
commutes:

V
iV
> V ∗

W

f
∨ iW

> W ∗

f∗
∧

We will show that this does not even work for V = R. Let e ∈ R be the standard basis for R, and let e∗ be the
dual basis. Suppose iR : R→ R∗ takes e 7→ ce∗. Then if the diagram above is to commute for all f : R→ R,
we let f(e) = c′e, and follow the diagram. If we go through the top arrow, then we see that e 7→ ce∗, while if
we go through the three arrows (the side arrows and the bottom arrow), then we found that e 7→ c′cf∗(e∗).
However, when evaluated at e, we see that ce∗(e) = c and c′cf∗(e∗)(e) = c′ce∗(f(e)) = c′ce∗(c′e) = c′cc′.
Thus we see that c has to satisfy c′cc′ = c for all c′ ∈ R. In R, no such c can possibly exist, so we conclude
that there are NO isomorphism iV : V → V ∗ making the above diagram commute.

Question 4-7.

(a) The identity functor satisfies F (1V ) = 1V and F (g◦f) = g◦f = F (g)◦F (f) essentailly by definition.

(b) Let 1V be the identity function on V , then F (1V ) = 1∗∗V . We will use part (e) to do this problem.
Since V ∗∗ = (V ∗)∗, we see by part (e) that 1∗∗V = (1∗V )∗ = (1V ∗)

∗ = 1V ∗∗ , so i∗∗V is the identity function on
V ∗∗. Now let f : W → Z and g : V → W , then consider F (f ◦ g) = (f ◦ g)∗∗. Again by part (e), since
(f ◦ g)∗∗ = ((f ◦ g)∗)∗ = (g∗ ◦ f∗)∗ = f∗∗ ◦ g∗∗. Thus we see that F (f ◦ g) = F (f) ◦ F (g), and so F is a
covariant functor.

(c) By definition F (1V )(T )(λ1, ..., λn) = T (λ1 ◦ 1V , ..., λn ◦ 1V ) = T (λ1, ..., λn), and so we see that
F (1V ) = 1Tk(V ). On the other hand, F (f ◦ g)(T )(λ1, ..., λn) = (T )(λ1 ◦ f ◦ g, ..., λn ◦ f ◦ g) = F (g)(T )(λ1 ◦
f, ..., λn ◦ f) = (F (f) ◦ F (g))(T )(λ1, ..., λn), and hence F (f ◦ g) = F (f) ◦ F (g). So F is a covariant functor.

(d) Suppose F is a functor and f : V →W is an isomorphism. We will show that F (f) : F (V )→ F (W )
(suppose F is covariant) is an isomorphism. The proof of the case when F contravariant is similar. Note
that F (f) ◦ F (f−1) = F (f ◦ f−1) = 1F (W ) and F (f−1) ◦ F (f) = F (f−1 ◦ f) = 1F (V ) and so we see that
F (f) is a morphism in the target category from F (V )→ F (W ) with inverse F (f−1), and hence F (f) is an
isomorphism in the target category.

(e) Let 1V be the identity function on V , then F (1V ) = 1∗V . Then i∗V w(v) = w(iV v) = w(v) for all
w ∈ V ∗ and v ∈ V , so i∗V w = w for all w ∈ V ∗, and hence i∗V = iV ∗ . Now let f : W → Z and g : V → W ,
then consider F (f ◦ g) = (f ◦ g)∗. Suppose v′ ∈ V ∗ and z ∈ Z, we see that (f ◦ g)∗(v′)(z) = v′(f ◦ g(z)) =
f∗v′(g(z)) = g∗ ◦ f∗v′(z), so F (f ◦ g) = (f ◦ g)∗ = g∗ ◦ f∗ = F (g) ◦ F (f). So F is a contravariant functor.

(f) The verification follows essentially by part (e). F (1V ) = 1∗V : T k(V )→ T k(V ) by sending F (1V )T (v1, ..., vk) =
T (1V (v1), ..., 1V (vk)) = T (v1, ..., vk), so it maps T 7→ T and hence F (1V ) is the identity on T k(V ).
On the other hand, F (f ◦ g)T (v1, ..., vk) = T ((f ◦ g)(v1), ..., (f ◦ g)(vn)) = F (f)T (g(v1), ..., g(vn)) =
F (g) ◦ F (f)T (v1, ..., vn). Thus F (f ◦ g) = F (g) ◦ F (f), and hence F is a contravariant functor.

Question 5-3.

We will let the complete metric space be just R with the regular metric, and we will construct a function

such that d(f(x), f(y)) < d(x, y) for all x, y ∈ R, but f has no fixed point. Let φ(t) = e−
1
t2 for t 6= 0 and
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φ(0) = 0. Consider the function

f(x) =

∫ x

0

φ(t)dt+
√
π

Since φ(t) is continuous (thus integrable), we see that f(x) is well defined and continuous. Now since φ(t) < 1
for all t ∈ R, let x, y ∈ R and assume without loss of generality that x > y, then

|f(x)− f(y)| =
∣∣∣∣∫ x

y

φ(t)dt

∣∣∣∣ ≤ ∫ x

y

|φ(t)|dt <
∫ x

y

1dt = |x− y|

However, as ∫ ∞
0

(
1− e−

1
t2

)
dt =

√
π

we see that ∫ x

0

(
1− e−

1
t2

)
dt <

√
π for all x ≥ 0

and so

x <

∫ x

0

e−
1
t2 dt+

√
π = f(x) for all x ≥ 0

Similarly we can verify that f(x) > x for all x < 0. Thus f(x) > x for all x ∈ R and so f has no fixed
point. Thus in the complete metric space R with the regular metric, there exist a function f(x) such that
d(f(x), f(y)) < d(x, y) for all x, y ∈ R, but f has no fixed point.

Question 1.

Suppose ω ∈ T ∗M and (x, U) is a chart on M , then in local coordinates,

w(p) =

n∑
i=1

ωi(p)dx
i|p

Now given any integer k ≥ 0, we will show that ω is Ck if and only if wi are Ck for all i. Let (x, U) be a
chart on U and let Φ : π−1(U) → U × Rn be the function that take ξidx

i|p 7→ (p, (ξ1, ..., ξn)), then we see
from our contruction of the smooth structure on T ∗M that Ψ = (x × Id) ◦ Φ : π−1(U) → R2n by mapping
ξidx

i|p 7→ (x1(p), ..., xn(p), ξ1, ..., ξn) is a chart on T ∗M . So in the two charts (x, U), (Ψ, π−1(U)), we see that
the coordinate representation of ω, Ψ ◦ ω ◦ x−1, maps (x1(p), ..., xn(p)) 7→ (x1(p), ..., xn(p), ω1(p), ..., ωn(p)).
So in the coordinate representation, it is clear that ω is smooth if and only if ωi are smooth for all i.

Question 2.

We will show that the ∼ defined as in the question is an equivalence relation. First of all, (p, α, v) ∼
(p, α, v) because p = p and v = (Id) · v = gαα(p)v. Secondly, if (p, α, v) ∼ (q, β, w), then p = q and
w = gβα(p)v, but the q = p and gαβ(p)w = gαβ(p) ◦ gβα(p)v = (Id) · v = v, so (q, β, w) ∼ (p, α, v).
Lastly, suppose (p, α, v) ∼ (q, β, w) and (q, β, w) ∼ (r, γ, x), then we see that p = q = r, w = gβα(p)v, and
x = gγβ(p)w. Now by property (c), we see that x = gγβ(p) ◦ gβα(p)v = gγα(p)v, so (p, α, v) ∼ (r, γ, x). Thus
∼ is an equivalence relation.

Let Ê = {(p, α, v) ∈M×I×Rk : p ∈ Uα} and define E = Ê/ ∼. Then on each fiber Ep = {[p, α, v] ∈ E},
we define [p, α, v]+[p, β, w] = [p, α, v+gαβw] and c[p, α, v] = [p, α, cv]. Addition is well defined because given
any other representation [p, α′, v′] = [p, α, v] and [p, β′, w′] = [p, β, w], we see that [p, α′, v′] + [p, β′, w′] =
[p, α′, v′ + gα′β′w

′] = [p, α, gαα′v
′ + gαα′gα′β′w

′] = [p, α, v + gαα′v
′ + gαα′gα′β′gβ′βw] = [p, α, v + gαβw] =

[p, α, v] + [p, β, w]. Similarly, if [p, α′, v′] = [p, α, v], then c[p, α′, v′] = c[p, α′, v′]. So we see that Ep has a
well-defined vector space structure.
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Question 3.

The map tα ◦ t−1β : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn by mapping (p, v)
t−1
β7→ [p, β, v] = [p, α, gαβ(p)v]

tα7→
(p, gαβ(p)v). Now as gαβ : Uα ∩Uβ → GL(n,R) is C∞ and matrix multiplication in polynomial in its entries
(so matrix multiplication is also smooth), we see that tα ◦ t−1β is a smooth map. Similarly we see that

tβ ◦ t−1α = (tα ◦ t−1β )−1 is a smooth map (since we can just interchange α and β in the above argument), so

tα ◦ t−1β is a diffeomorphism.

Question 4.

From the previous question, tα ◦ t−1β is a diffeomorphism for all α, β. Given any p, we let p ∈ Uα for some

Uα. Let (φp, Vp) be a chart in M such that Vp ⊂ Uα, and define a map Ψp : π−1(Vp)→ φ(Vp)×Rk to be the
composition (φp×Id)◦ tα. Note that Ψp is a bijective map, and its image is open in Rn×Rk. Now given any
two such Ψp and Ψq (where q ∈ Uβ), if Vp∩Vq 6= ∅, we see that Ψp◦Ψ−1q = (φp×Id)◦tα◦t−1β (φq×Id)−1. Since

(φp×Id), tα◦t−1β , and (φq×Id)−1 are C∞ diffeomorphisms, we see that Ψp◦Ψ−1q is a C∞ diffeomorphism. So

we first define an open basis on E to be sets of the form Ψ−1p (V ×Rk) for some open set V ∈ Rn. Then with

this topology on E, we see that Ψp is a homeomorphism to an open subset of Rn ×Rk under this topology.
The condition that Ψp ◦Ψ−1q is a C∞ diffeomorphism tells us that {(π−1(Vp),Ψp)} form compatible charts.
So taking the maximal atlas containing these, we have a C∞ structure on E.

The map π : E →M is smooth because in coordinates (φp, Vp) and (Ψp, π
−1(Vp)), the map φp ◦ π ◦Ψ−1p

maps (φ1p(a), ..., φnp (a), v1, ..., vk) 7→ (φ1p(a), ..., φnp (a)), which is C∞. On the other hand, tα is a smooth map

because in coordinates (Ψp, π
−1(Vp)) and (Vp×Rk, φp× Id), the map φp× Id ◦ tα ◦Ψ−1p is the identity map,

which is clearly C∞. Thus E → B is a smooth vector bundle with smooth local trivialization tα.

Question 5.

Suppose π′ : E′ →M is a bundle that has the same collection of trivialization neighborhoods {Uα} and
the same transition map such that E′ →M is smooth and tα are smooth local trivializations, then using the
fact that tα is a diffeomorphism onto its image (verified in the previous part), we see that t−1α ◦ tα : E → E′

(where the first t−1α is the map for E and tα is considered for E′) is a diffeomorphism. So we see that locally E
and E′ are diffeomorphic, and hence E is diffeomorphic to E′. The fact that this diffeomorphism commutes
over M (i.e. π = π′ ◦ t−1α ◦ tα) follows from the contruction. Thus we see that E′ → M is isomorphic as a
vector bundle to E →M .
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