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Question 1-10.

To show that the limit of a convergent subsequence of the zi is actually in the closed ball of radius r(y)
centered at y, we first denote the subsequence to be znj , and denote its limit point to which znj converges as
z. By the original contruction, we see that znj

is in the ball of radius r(ynj
) centered at ynj

. Since ynj
→ y

and r is a continuous function, so given ε > 0, for nj large enough, we see that

d(z, y) ≤ d(z, znj
) + d(znj

, ynj
) + d(ynj

, y)

≤ ε+ r(ynj
) + ε

≤ ε+ r(y) + ε+ ε

= r(y) + 3ε

Thus as ε is arbitrary, we see that d(z, y) ≤ r(y) and hence the limit of a convergent subsequence of the zi
is actually in the closed ball of radius r(y) centered at y.

Question 1-18.

(a) Let n > 1, and let C ⊂ Rn. Since compact subsets of Rn are closed and bounded, we see that there
exist a closed ball B̄ centered at 0 such that C ⊂ B̄ ⊂ Rn. Now Rn − B̄ is connected (here we are using the
Jordan-Brouwer separation theorem), and thus Rn has one end.

On the other hand, consider n = 1 and a compact C ⊂ R. Given any compact K such that C ⊂ K ⊂ R,
we know that K is closed and bounded. Let a = supK and let b = inf K, then we see that (a,∞) and
(−∞, b) are two connected components of R −K, and thus R is not connected. Thus R does not have one
end.

(b) Consider Rn−{0}. Let C be the compact set B2(0)−B1(0), then for any compact set K such that
C ⊂ K ⊂ Rn, we see that (Rn − {0}) −K contains at least two components, and thus Rn − {0} does not
have one end, and therefore Rn−{0} is not homeomorphic to Rn as ”has one end” is a topological property
(since connectedness and compactness are both topologocal properties).

Question 1-19(a,b).

(a) Given any compact C1 and C2, we see first that ε(C1) and ε(C2) must be either the left unbounded
component or the right unbounded component. Suppose we pick arbitrarily that ε(C1) is the left unbounded
component and ε(C2) is the right unbounded componen, then consider C1 ∪ C2, which is a compact set
containing both C1 and C2. So if we pick ε(C1 ∪ C2) to be the left unbounded component, then ε(C1 ∪ C2)
is not contained in ε(C2), failing the condition stated. If we pick ε(C1 ∪ C2) to be the right unbounded
component, then ε(C1 ∪ C2) is not contained in ε(C1), again failing the condition stated. Since C1, C2 are
arbitrary, it must be that ε(C) is either always ”right” or always ”left”, and thus R has 2 ends.
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(b) We will do the general case. Suppose X has exactly one end ε, then we see that given a compact
set C, if for all compact K containing C, X −K is not connected, then there are at least two components
for all X −K. Then we see that there will be at least two ε’s such that the ”inclusion reversing” criterion is
satisfied (we can consistently choose ε(K) to be some component contained in ε(C), and there are at least
two choices of ε(C)). But this contradicts the fact that X has exactly one end, and so there must be a
compact K containing C such that X −K is connected. Thus X ”has one end” as defined in the previous
problem.

On the other hand, suppose X ”has one end” as defined in the previous problem. Then given any C,
there is a compact K such that C ⊂ K and X − K is connected. Then the obvious choice of ε(C) is the
connected component of X −C that contains X −K. This gives a ”consistent” (in the sense that it satisfies
the ”inclusion reversing” property) choice of ε, so we see that X has at least one end. Furthermore, the
property that C ⊂ K implies ε(K) ⊂ ε(C) implies that there is only one connected component of C that
one can pick. Thus ε(C) is unique for all C, and thus X has exactly one end.

Apply this general result to X = Rn (in combination with the result in the previous problem), we see
that Rn has only one end when n > 1.

Question 1-25.

(a) We will show that M , under this alternative definition, satisfies the original definition of being a
manifold-with-boundary. Suppose M is a manifold-with-boundary as defined in this question, and x ∈M is
any point, then there is a neighborhood U of x and an integer n ≥ 0 such that U is homeomorphic (under a
map h) to an open subset h(U) of Hn. Let h(x) = (x1, x2, ..., xn), there are two cases: first, that xn = 0, and
second, that xn > 0. If xn = 0, then we see that there is a open half ball (an intersection of an open ball with
Hn), denote by HBh(x), centered around h(x) such that HBh(x) ⊂ h(U). Thus taking h−1(HBh(x)) we see
that this is open in U and containing x, and we take this to be the neighborhood for the ”original definition”
given in book. Now as open half balls are homoemorphic to Hn under a homeomorphism h′, we let h′ ◦ h be
the homeomorphism for the ”original definition” given in book. Then it is clear that (h′ ◦h, h−1(HBh(x))) is
a pair such that h−1(HBh(x)) is an open neighborhood of x and h′◦h is a homeomorphism from h−1(HBh(x))
to Hn.

On the other hand, if xn > 0, then we see that there is an open ball, denote by Bh(x), centered around
h(x) such that Bh(x) ⊂ h(U). Thus taking h−1(Bh(x)) we see that this is open in U and containing x,
and we take this to be the neighborhood for the ”original definition” given in book. Now as open balls are
homoemorphic to Rn under a homeomorphism h′, we let h′ ◦ h be the homeomorphism for the ”original
definition” given in book. It is again clear that (h′ ◦h, h−1(Bh(x))) is a pair such that h−1(Bh(x)) is an open
neighborhood of x and h′ ◦ h is a homeomorphism from h−1(Bh(x)) to Rn. Thus we have shown that this
definition of manifold M is also a manifold under the original book definition.

(b) Let M be a manifold with boundary. We will show that ∂M is a manifold. Given a point x ∈ ∂M ,
we see by the first part that there is a U containing x and a homeomorphism h such that h(U) is an open
subset of Hn. Now let V ⊂ h(U) be the set of points such that the last component is 0, then we see that V is
an open subset of Rn−1 (the subspace of Rn with the last component 0), and thus h−1(V ) is an open subset
of ∂M containing x. Furthermore, h|(U∩∂M) is a homeomorphism from h−1(V ) to V , i.e. a homeomorphism
from h−1(V ) to an open subset of Rn−1, and thus ∂M is a manifold of ”dimension” n− 1.

On the other hand, consider M − ∂M , then given a point x ∈M − ∂M , by the first part of this quesiton
we see that we can always take U to be a neighborhood not intersecting the boundary, and a homeomorphism
h which maps U to an open ball in Rn. But this is the definition of being a manifold, and so we conclude
that M − ∂M is a manifold (of ”dimension” n).

(c) Consider X = M − ∪i∈I′Ci. Given any point x in X, we treated first of all as a point in M . If
x /∈ ∪i/∈I′Ci (i.e. x is not a boundary point in the original M), then a chart of M containing x that map a
neighborhood U homoemorphically onto Rn will also map this neighborhood U homoemorphically onto Rn

2



when considered in X. Similarly, if x ∈ ∪i/∈I′Ci, then a chart of M containing x that map a neighborhood U ′

homoemorphically onto Hn will also map this neighborhood U ′ homoemorphically onto Hn when considered
in X. Thus X is a manifold-with-boundary.

Question 2-1.

(a) Being C∞-related is not an equivalence relation, as it fails transitivity. Suppose (x, U) and (y, V )
are C∞-related, and (y, V ) and (z,W ) are C∞-related, then it is only guaranteed that (x, U) and (z,W ) are
C∞-related on the domain x(U ∩ V ∩W ) and z(U ∩ V ∩W ), but says nothing about x ◦ z−1 nor z ◦ x−1 on
the correct domain z(U ∩W ) and x(U ∩W ) respectively.

(b) The charts in A′ are all charts y′ which are C∞-related to all charts x ∈ A. Thus given any
(f, Uf ), (g, Ug) ∈ A′, we see that for all (x, Ux) ∈ A, f ◦ x−1 : x(Ux ∩ Uf ) → f(Ux ∩ Uf ) and x ◦ f−1 :
f(Ux ∩ Uf ) → x(Ux ∩ Uf ) are both C∞, and similarly for the cases g ◦ x−1 and x ◦ g−1. Thus the maps
(f ◦ g−1)|g(Ux∩Uf∩Ug) : g(Ux ∩ Uf ∩ Ug)→ f(Ux ∩ Uf ∩ Ug)) and (g ◦ f−1)|f(Ux∩Uf∩Ug) : f(Ux ∩ Uf ∩ Ug)→
g(Ux ∩ Uf ∩ Ug)) are both C∞. Now as x ∈ A is arbitrary, and as A is an atlas of charts covering M , we
apply the above procedure to all x ∈ A, which, by the glueing lemma of smooth functions, allows us to
conclude that (f ◦ g−1) : g(Uf ∩Ug)→ f(Uf ∩Ug)) and (g ◦ f−1) : f(Uf ∩Ug)→ g(Uf ∩Ug)) are C∞. Thus
f, g ∈ A′ are C∞-related. This shows that all charts of A′ are C∞-related.

Question 2-4.

I was unable to classify and list out all ”distinct” C∞ structures on R, but I tried to see how ”big”
the size of this set is. We will do this by first constructing homeomorphisms from R → R. Given any real
number r ∈ R, we consider the function

fr(x) =

{
xr if x ≥ 0

−(−x)r if x < 0

The function fr is continuous and one to one from R onto R, and hence it is a homeomorphism (as we are
in R, fr is an open mapping by the invariance of domain).

Now consider any two distinct real numbers r and s, we define an altas Ar and As to be the unique
maximal atlas containing (fr,R) and (fs,R) respectively, we see that fr ◦ fs or fs ◦ fr (or both) cannot be
smooth, so we know that Ar and As must be ”distinct”. Thus this shows that there are at least 2ℵ0 distinct

C∞ structures. On the other hand, the set of continuous functions from R→ R have 22
ℵ0

size, so we know
an upper bound. Thus we have an idea on how many distinct C∞ structures are on R.

Question 2-14.

(a) Consider the map f : R2 → R2 by

f(x, y) =

{
(x, y2) if y ≥ 0

(x, y3) if y < 0

then we see that f(x, 0 = (x, 0)) for all x, f(x, y) ⊂ H2 for y ≥ 0, and f(x, y) ⊂ R − H for y < 0. This f ,
when restricted to the upper-helf plane or the lower half plane is C∞ as all partials of all orders exist and
are continuous. The function f , though, is not C∞ as it is not even C2. Thus we have shown that such
function exists.

(b) We will show that this construction does not define a C∞ structure on P . Suppose (x, U) and (y, V )
are coordinate systems around p and f(p) respectively satisfying the properties described in the problem.

3



Now consider the coordinate systems (g ◦x, U) and (r ◦ g ◦ r ◦ y), V ) where g is the function that is described
in part (a) and r is the reflection along the last component. We know that (g ◦ x, U) and (x, U) are C∞

related because g|Hn and g−1|Hn are both C∞. Similarly (r ◦ g ◦ r ◦ y, V ) and (y, V ) are C∞ related. Now
we use (x, U) and (y, V ) to build a chart (W1, φ1) of p ∈ P , and we use (g ◦ x, U) and (r ◦ g ◦ r ◦ y, V ) to
build a second chart (W2, φ2) of p ∈ P , then we see that φ2 ◦ φ−11 is precisely the map g|W1

, which is not
C∞ by the first part of this question.

(c) We will define a C∞ structure on P such that the inclusions of M and N are C∞ and such that the
map from U ∪ V to ∂M × (−1, 1) induced by α and β is a diffeomorphism.

P = M ∪f N , we let iM , iN be the inclusion map from M,N into P respectively, and let p ∈ P . Suppose
p = iM (x) for some x not on the boundary of M , and suppose (U0, φ) is a chart of x ∈M , then we can just
set the chart of p ∈ P to be (iM (U0), φ′) where φ′(a) = φ ◦ i−1(a) for any a ∈ iM (U0). Similarly we can do
this for y ∈ N not on the boundary of N .

Now suppose p ∈ P is in the image of iM (x) = iN ◦ f(x) where x is on the boundary of M . Recall that
α : U ∼= ∂M × [0, 1) and β : V ∼= ∂N × [0, 1) are diffeomorphisms. Now we let [0, 1) be the neighborhood
and i : [0, 1) → [0, 1) by the identity chart of the manifold with boundary [0, 1). Given x ∈ ∂M , we proved
in question 1-25 that ∂M is a manifold, so let (ψ,U0) be a chart, we consider the chart ((ψ × i) ◦ α,U1)
in M where α(U1) = U0 × [0, 1). We do this similarly for f(x) on the boundary of N to obtain a chart
((φ× i) ◦ β, V1). Now we apply the construction in part (b) to get a chart of p. We see that these charts are
C∞ related as follows: By construction, it is clear that a chart in the interior of M are C∞ to all the other
charts in P . We need only consider two charts at two points p1, p2 on the image of the boundary in P . Lets
say (ζ1,W1), (ζ2,W2) are two said charts, then ζ1 ◦ ζ−12 is η1 ◦ η−12 × Id, where η are the restrictions of the
charts to a chart of the boundary, and thus the ζ’s are Cinfty related. We take the maximal atlas containing
these charts, and uniqueness follows.

It is clear that the inclusion of M into P is C∞ at any point x in the interior of M is C∞. So we
consider a point x ∈ ∂M . Then let (ζ,W ) be the chart of i(x) in P and let (ψ,U0) be the chart in M that
we construct (ζ,W ) from (as described in the previous paragraph). Then ζ ◦ i ◦ ψ−1 is indeed the identity
function, so is C∞. Similarly we can do this for the inclusion of N into P .

Finally we consider the map Ψ from U ∪ V to ∂M × (−1, 1) induced by α and β. By our construction, a
chart in U ∪V comes from gluing charts of the form ((ψ× i)◦α,U1) and ((φ× i)◦β, V1), which gives a chart
((φ◦β1)× i, U1∪f V1) on U ∪V . However, this chart is precisely Ψ◦ (φ× i), and thus we see that the chart in
U ∪ V corresponds bijectively to charts of ∂M × (−1, 1) under the map Ψ, and thus Ψ is a diffeomorphism.

(d) Consider the pair (i1, i2) of two identity functions on the two copies of H2, and another pair (f1, f2)
where f1(x, y) = f2(x, y) = (x, y2) defined on the neighborhood U = {(x, y) : 0 ≤ y < 1}. Then the resulting
C∞ structure on R2 are diffeomorphic under the map

ξ(x) =


x if x ≥ 1

x2 if 0 ≤ x < 1

−x2 if − 1 < x < 0

x if x ≤ −1

and from the explicit form of ξ it is clear that it cannot be chosen arbitrarily close to the identity map.

Question 2-23.

Here I will use results from the four problems below. Assum n > 1. Suppose a curve γ : [0, 1] → Rn is
rectifiable, then by definition, H1(γ) = l(γ) <∞. Then the measure in Rn, which is Hn(γ), is 0 by Question
2 (which is proved below). Thus the image of a rectifiable curve has measure 0.

Question 1.
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Assuming the Jordan-Brouwer separation theorem, we suppose U ⊂ Rn is open, and f : U → R is one
to one and continuous. Then given any point y ∈ f(U), we consider f−1(y). Since f−1(y) ∈ U , we consider
a open ball Br(f

−1(y)) ⊂ U of diameter r centered at f−1(y). Then consider Br(f−1(y)) ⊂ U , we first
see that, f(Br(f−1(y))) is compact, so it is closed and bounded. Thus by the Jordan-Brouwer separation
theorem, we see that f(Br(f

−1(y))) is the bounded component, and as connected components are both
open and closed in Rn − f(∂Br(f−1(y))), and we see that Rn − f(∂Br(f−1(y))) is open in Rn, we see that
f(Br(f

−1(y))) is an open set containing y. Thus f(U) is open, and we have proved the invariance of domain.

Question 2.

Let A be a subset of a metric space (X, d) and n,m ∈ (0,∞) with n > m. Suppose Hm(A) = k < ∞,
then by definition limδ→0+ φm,δ(A) = k <∞. Consider φn,δ(A) given any fixed δ, we see that

φn,δ(A) = inf
G

∑
S∈G

ζn(S)

≤ infG δn−m
α(n)

α(m)

∑
S∈G

ζm(S)

= δn−m
α(n)

α(m)
infG

∑
S∈G

ζm(S)

= δn−m
α(n)

α(m)
φm,δ(A)

So we see that

lim
δ→0+

φn,δ(A) ≤ lim
δ→0+

δn−m
α(n)

α(m)
φm,δ(A) = lim

δ→0+

(
δn−m

α(n)

α(m)

)(
lim
δ→0+

φm,δ(A)

)
= 0 ∗ k = 0

Thus Hn(A) = 0

Question 3.

Let A be a subset of a metric space (X, d) and n,m ∈ (0,∞) with n > m. Suppose Hn(A) = k > 0. By
definition limδ→0+ φn,δ(A) = k > 0. Consider φm,δ(A) given any fixed δ, we see that

φm,δ(A) = inf
G

∑
S∈G

ζm(S)

≥ infG δm−n
α(m)

α(n)

∑
S∈G

ζn(S)

= δm−n
α(m)

α(n)
infG

∑
S∈G

ζn(S)

= δm−n
α(m)

α(n)
φn,δ(A)

So we see that

lim
δ→0+

φm,δ(A) ≥ lim
δ→0+

δm−n
α(m)

α(n)
φn,δ(A) =∞

Thus Hm(A) =∞

5



Question 4.

Suppose (X, d) is a metric space and α ∈ (0, 1), we consider the metric space (X, dα). Suppose there is
some rectifiable curve γ under the metric dα, then what this translates to in terms of Hausdorff dimension is
that Hα(γ) <∞ in the space (X, d). However, by Question 2, we see that this implies that H1(γ) = l(γ) = 0
in the space (X, d), so in the space (X, d) this curve γ is trivial, and hence in the space (X, dα) it must be the
trivial curve as well. Thus we conclude that (X, dα) is a metric space with no nontrivial rectifiable curves.
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