
214 - Homework Assignment # 1

Complete the following exercises in Spivak:
1-10, 1-18, 1-19(a,b), 1-25, 2-1, 2-4, 2-14, 2-23.
For 1-19b, assume X is a connected manifold. Feel free to use the Axiom

of Choice if needed in your proof. (If you are not familiar with the Axiom of
Choice, you might end up using it anyway. Don’t worry about this unless you
want to.)

Additionally, complete the following four problems. Relevant definitions and
background material follow the problem statements.

1. Prove Invariance of Domain, assuming the Jordan-Brouwer separation the-
orem.

2. Let A be a subset of a metric space (X, d) and n,m ∈ (0,∞) with n > m.
Prove that Hm(A) <∞ implies Hn(A) = 0.

3. Let A be a subset of a metric space (X, d) and n,m ∈ (0,∞) with n > m.
Prove that Hn(A) > 0 implies Hm(A) =∞.

4. Let (X, d) be a metric space and α ∈ (0, 1). Prove that (X, dα) is a metric
space with no nontrivial rectifiable curves.

Theorem 1 (Jordan-Brouwer separation theorem). If f : Dn → Rn is injec-
tive and continuous, then Rn \ f(∂Dn) has two components: Rn \ f(Dn) and
f(intDn). Furthermore, Rn \ f(Dn) is unbounded and f(intDn) is bounded.

The remaining discussion will define the Hausdorff measure Hm, providing
context for Spivak’s use of “measure zero” for anyone unfamiliar with Lebesgue
measure.

Recall the method of definition of arc-length for a curve γ : [a, b]→ Rn from
calculus. There, we underestimate the length by taking a partition a = t1 <
t2 < · · · < tk = b and computing

k−1∑
i=1

d(γ(ti), γ(ti+1)).

The length of γ is then defined to be the supremum of all such underestimates
over all partitions of [a, b]. (For C1 curves, the length is equivalently the limit
of these underestimates as the mesh of the partition goes to zero, leading to the
familiar integration formula.) Everything here makes sense in a general metric
space (X, d), leading to the following definition.
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Definition 1. For a curve γ : [a, b]→ (X, d), we define the length l(γ) of γ to
be

l(γ) = sup
a=t1<t2<···<tk=b

k−1∑
i=1

d(γ(ti), γ(ti+1)).

If l(γ) <∞, then γ is called a rectifiable curve.

Of course, for objects more complicated than curves and areas or higher
dimensional volumes, the situation will be trickier. What follows is one useful
generalization of the previous concept.

We will be defining a notion of m-dimensional volume of a set A in a metric
space (X, d). For curves, we estimated the length of an arc of the curve by taking
d(γ(ti), γ(ti+1)). We need a comparable m-dimensional notion for a “piece” of
A. Our choice will be to look at diamS for subsets S of A, where

diamS = sup
x,y∈S

d(x, y).

If (X, d) is Euclidean Rm (m 6= 1) and S = Br(0), then diamBr(0) does not
grow like the volume as r varies, so we actually want (diamS)m in order to get
something close to volume. We now have a notion that matches volumes for
balls, up to a proportional constant depending on m, so we set

ζm(S) = α(m)(diamS)m,

where α(m) is to be determined later. (The precise value of α(m) does not
matter much in most applications and you should be able to ignore it in the
problems.) Intuitively, computing ζm(S) for a set of large diameter is like mea-
suring with a ruler that only has large distances marked, so restricting diamS
should give us a better estimate. We therefore introduce

φm,δ(A) = inf
∑
S∈G

ζm(S),

where the infimum is taken over G ⊂ {S : diamS ≤ δ} with G covering A.
The construction trivially gives that φm,δ(A) is monotone in δ, allowing us to
guarantee existence of the limit in the following definition.

Definition 2. The m-dimensional Hausdorff measure Hm(A) of A ⊂ (X, d) is

Hm(A) = lim
δ→0+

φm,δ(A) = sup
δ>0

φm,δ(A).

We always have Hm(A) ∈ [0,∞]. In fact, Hausdorff measure is an honest
measure, or more precisely a Borel regular measure, if you are familiar with
those terms. You will show that for a fixed A, Hm(A) ∈ (0,∞) for at most
one value of m, giving us a notion of dimension for A, called the Hausdorff
dimension. One interesting property of this definition is that we never used an
assumption that m is an integer, allowing for the existence of sets of fractional
(or even irrational) Hausdorff dimension!
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As a final step, we need to define α(m). Again, the precise value of this tends
not to matter much, so further reading should only be of your own volition. For
m ∈ N, we know we want α(m) to force ζm to give the correct value for balls in
Rm. Unless your are particularly attached to closed-form expressions, we may
simple declare

α(m) =
Vol{x ∈ Rm : ‖x‖ < 1}

2m

and be done with the integer case. For non-integral m > 0 however, this makes
no sense. We need a closed-form expression that gives the correct values on
N and is defined for all nonnegative numbers. The choice taken for Hausdorff
measure is

α(m) =
(Γ(1/2))m

2mΓ(1 + (m/2))

where

Γ(z) =

∫ ∞
0

tz−1e−t dt

is the usual Gamma function. This is mere convention, as any α matching the
correct values for N will still give the same relationships to classical volumes.
Furthermore, another choice would simply correspond to a change in units of
measurement. We therefore use the above α as it is a particularly clean choice.
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