Homework # 5

August 1st Due: August 6th, 2013

Exercise 1.

Find the flux of the vector field $\vec{F} = \langle \frac{x}{x^2+y^2}, \frac{y}{x^2+y^2} \rangle$ outwards through any circle centered at (1,0) of radius $r \neq 1$.

Exercise 2.

Evaluate the surface integral $\int \int_{\Sigma} \vec{F} \cdot \hat{\mathbf{n}} \ dS$ where Σ is the part of the cone $z = \sqrt{x^2 + y^2}$ beneath the plane z = 1 with downward orientation and $\vec{F} = \langle x, y, z^4 \rangle$.

Exercise 3.

Verify Stokes' theorem is true for $\vec{F} = \langle y, z, x \rangle$ with surface Σ the hemisphere $x^2 + y^2 + z^2 = 1$, $y \ge 0$, oriented in the positive y direction.

Exercise 4.

- (a) Let $f(x, y, z) = 1/\rho = (x^2 + y^2 + z^2)^{-1/2}$. Calculate $\vec{F} = \nabla f$, and describe geometrically the vector field \vec{F} . (b) Evaluate the flux of \vec{F} over the sphere of radius a centered at the origin.
- (c) Show that $\operatorname{div}(\vec{F}) = 0$. Does the answer obtained in (b) contradict the divergence theorem? Explain.
- (d) Let Σ be the surface in the first octant, whose boundary lies in the three coordinate planes (see below). Show that $\int \int_{\Sigma} \vec{F} \cdot \hat{\mathbf{n}} dS$ is independent of the choice of Σ and calculate its value. (Hint apply the divergence theorem to a suitable portion of the first octant.)

