Math 53 - Multivariable Calculus

Homework # 3

July 18th Due: July 23rd, 2013

Exercise 1.

(a) Describe and sketch the image of the disk of radius 1, $D = u^2 + v^2 \leq 1$, under the transformation x = au, y = bv, where $a, b \in \mathbb{R}$ and $a \neq 0, b \neq 0$.

(b) Use the ideas from part (a) to find the area enclosed by the ellipse $(2x + 5y - 3)^2 + (3x - 7y + 8)^2 = 1$.

Exercise 2.

Evaluate $\int_{\mathbb{R}} e^{-ax^2} dx$, where *a* is any positive real number. (Hint: Let $I = \int_{\mathbb{R}} e^{-ax^2} dx$ then write I^2 as a double integral.)

Exercise 3.

Show that a constant force field does zero work on a particle that winds uniformly w times around the ellipse $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1.$

Exercise 4.

Compute $\int_0^1 \int_0^1 e^{\max(x^2, y^2)} dy dx$ where $\max(x^2, y^2)$ means the larger of the numbers x^2 and y^2 .

Exercise 5.

Evaluate
$$\int_C \vec{F} \cdot d\vec{r}$$
 where $\vec{F}(x,y) = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$ and C is the parabola $y = 1 + x^2$ from $(-1,2)$ to $(1,2)$.