Homework \# 1

June 27th
Due: July 2nd, 2013

Exercise 1 (Stewart $12.3 \# 49)$. Use a scalar projection to show that the distance from a point $P_{1}=\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$ to the line $a x+b y+c=0 i s$

$$
\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

Use this formula to find the distance from the point $(-2,3)$ to the line $3 x-4 y+5=0$.

Exercise 2 (Stewart $12.3 \# 57$). Use that $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}=|\overrightarrow{\boldsymbol{A}}||\overrightarrow{\boldsymbol{B}}| \cos (\theta)$ to prove the Cauchy-Schwarz inequality:

$$
|\vec{A} \cdot \vec{B}| \leq|\vec{A}||\vec{B}| .
$$

Exercise 3 (Stewart $12.4 \# 44$). (a) Let P be a point not on the plane that passes through the points Q, R, and S. Show that the distance d from P to the plane is

$$
d=\frac{|(\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}) \cdot \overrightarrow{\boldsymbol{C}}|}{|\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}|}
$$

where $\overrightarrow{\boldsymbol{A}}=\overrightarrow{\boldsymbol{Q R}}, \overrightarrow{\boldsymbol{B}}=\overrightarrow{\boldsymbol{Q S}}$, and $\overrightarrow{\boldsymbol{C}}=\overrightarrow{\boldsymbol{Q P}}$. (b) Use the formula from before to find the distance from the point $P(2,1,4)$ to the plane through the points $Q(1,0,0), R(0,2,0)$, and $S(0,0,3)$.

Exercise 4 (The Geometry of a Tetrahedron, Stewart page 794). (Part 1) Let $\overrightarrow{\boldsymbol{V}}_{1}, \overrightarrow{\boldsymbol{V}}_{2}, \overrightarrow{\boldsymbol{V}}_{3}$, and $\overrightarrow{\boldsymbol{V}}_{4}$ be vectors with lengths equal to the areas of the faces opposite the vertices P, Q, R, and S, respectively, and directions perpendicular to the respective faces an pointing outward. Show that

$$
\sum_{i=1}^{4} \overrightarrow{\boldsymbol{V}}_{i}=\overrightarrow{\mathbf{0}}
$$

(Part 2) Suppose the tetrahedron in the figure (see Stewart page 794) has a trirectangular vertex S. Let A, B, and C be the areas of the three faces that meet at S, and let D be the area of the opposite face $P Q R$. Using the results of part 1 , or otherwise, show that

$$
D^{2}=A^{2}+B^{2}+C^{2}
$$

Exercise 5 (Stewart $12.5 \# 13, \# 52)$. (a) Is the line through $(-4,-6,1)$ and $(-2,0,-3)$ perpendicular to the line through $(-3,2,0)$ and $(5,1,4)$?
(b) Determine whether the planes

$$
2 x-3 y+4 z=5, \quad x+6 y+4 z=3
$$

are parallel, perpendicular, or neither. If neither, find the angle between them.

