Math 53 - Multivariable Calculus

Midterm \# 2

August 4th, 2011

Exercise 1.

(a) (5 points) Evalute the integral

$$
\int_{0}^{1} \int_{0}^{1} e^{\max \left\{x^{2}, y^{2}\right\}} d y d x
$$

where $\max \left\{x^{2}, y^{2}\right\}$ means the larger of the numbers x^{2} and y^{2}.
(b) (5 points) Find the volume of the solid E that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=1$.

Exercise 2. (5 points) How many functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are there whose partial derivatives are $f_{x}(x, y)=$ $x+4 y$ and $f_{y}(x, y)=3 x-y$. Prove your response.

Exercise 3. (10 points) Show that a constant force field does zero work on a particle that moves once uniformly around the circle $x^{2}+y^{2}=1$. Is this also ture for a force field $\overrightarrow{\boldsymbol{F}}(\overrightarrow{\boldsymbol{x}})=k \overrightarrow{\boldsymbol{x}}$, where $k \in \mathbb{R}$ and $\overrightarrow{\boldsymbol{x}}=\langle x, y\rangle$.

Exercise 4. (15 points) Use the divergence theorem to compute the flux of $\overrightarrow{\boldsymbol{F}}=\left\langle z^{2} x, \frac{1}{3} y^{3}+\tan (z), x^{2} z+\right.$ $\left.y^{2}\right\rangle$ through the top half of the sphere $S, x^{2}+y^{2}+z^{2}=1$.

Exercise 5.

(a) (5 points) Show that the vector field

$$
\overrightarrow{\boldsymbol{F}}=\left\langle e^{x} y z, e^{x} z+2 y z, e^{x} y+y^{2}+1\right\rangle
$$

is conservative.
(b) (10 points) Find a potential for $\overrightarrow{\boldsymbol{F}}$.
(c) (5 points) Prove whether the vector field $\overrightarrow{\boldsymbol{G}}=\langle y, x, y\rangle$ is conservative or not. If so, find a potential for $\overrightarrow{\boldsymbol{G}}$.

Exercise 6. (10 points) Suppose a particle moves along line segments from the origin to the points $(1,0,0),(1,2,1),(0,2,1)$, and back to the origin under the influence of the force field $\overrightarrow{\boldsymbol{F}}=\left\langle z^{2}, 2 x y, 4 y^{2}\right\rangle$. Find the work done.

Exercise 7. (15 points) Let M be the solid cylinder $x^{2}+y^{2} \leq 1,0 \leq z \leq 1$ and let $\overrightarrow{\boldsymbol{F}}=\langle x y, y z, z x\rangle$. Verify that the divergence theorem is true for $\overrightarrow{\boldsymbol{F}}$ on the region M.

Exercise 8. (15 points) Let D be the upper hemisphere of the unit sphere $x^{2}+y^{2}+z^{2}=1$. Use Stokes, theorem to evaluate

$$
\iint_{D}\left(x^{3} e^{y} \hat{\boldsymbol{\imath}}-3 x^{2} e^{y} \hat{\boldsymbol{\jmath}}\right) \cdot \hat{\boldsymbol{n}} d S
$$

where $\hat{\boldsymbol{n}}$ is the upward-pointing normal vector.

