Math 53 - Multivariable Calculus

Midterm # 2

August 4th, 2011

Exercise 1.

(a) (5 points) Evalute the integral

$$\int_0^1 \int_0^1 e^{max\{x^2,y^2\}} dy dx,$$

where $max\{x^2, y^2\}$ means the larger of the numbers x^2 and y^2 .

(b) (5 points) Find the volume of the solid E that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$.

Exercise 2. (5 points) How many functions $f : \mathbb{R}^2 \to \mathbb{R}$ are there whose partial derivatives are $f_x(x, y) = x + 4y$ and $f_y(x, y) = 3x - y$. Prove your response.

Exercise 3. (10 points) Show that a constant force field does zero work on a particle that moves once uniformly around the circle $x^2 + y^2 = 1$. Is this also ture for a force field $\vec{F}(\vec{x}) = k\vec{x}$, where $k \in \mathbb{R}$ and $\vec{x} = \langle x, y \rangle$.

Exercise 4. (15 points) Use the divergence theorem to compute the flux of $\vec{F} = \langle z^2 x, \frac{1}{3}y^3 + \tan(z), x^2 z + y^2 \rangle$ through the top half of the sphere $S, x^2 + y^2 + z^2 = 1$.

Exercise 5.

(a) (5 points) Show that the vector field

$$\vec{F} = \langle e^x yz, e^x z + 2yz, e^x y + y^2 + 1 \rangle$$

 $is\ conservative.$

- (b) (10 points) Find a potential for \vec{F} .
- (c) (5 points) Prove whether the vector field $\vec{G} = \langle y, x, y \rangle$ is conservative or not. If so, find a potential for \vec{G} .

Exercise 6. (10 points) Suppose a particle moves along line segments from the origin to the points $(1,0,0), (1,2,1), (0,2,1), and back to the origin under the influence of the force field <math>\vec{F} = \langle z^2, 2xy, 4y^2 \rangle$. Find the work done.

Exercise 7. (15 points) Let M be the solid cylinder $x^2 + y^2 \leq 1$, $0 \leq z \leq 1$ and let $\vec{F} = \langle xy, yz, zx \rangle$. Verify that the divergence theorem is true for \vec{F} on the region M. **Exercise 8.** (15 points) Let D be the upper hemisphere of the unit sphere $x^2 + y^2 + z^2 = 1$. Use Stokes' theorem to evaluate

$$\int \int_D \left(x^3 e^y \hat{\imath} - 3x^2 e^y \hat{\jmath} \right) \cdot \hat{\imath} \, dS,$$

where $\hat{\boldsymbol{n}}$ is the upward-pointing normal vector.