Math 53 - Multivariable Calculus

Midterm \# 1

July 8th, 2011

Exercise 1. Argue why or why not the following three planes intersect at a unique point:
(a) (5 points)

$$
x+2 y=0, \quad 3 y+5 z=0, \quad 3 y=0
$$

(b) (5 points)

$$
x+2 y+3 z=0, \quad 2 y+1 z=0, \quad 2 x+4 y+6 z=0
$$

Exercise 2.

(a) (5 points) Let $\overrightarrow{\boldsymbol{R}}=x(t) \hat{\boldsymbol{\imath}}+y(t) \hat{\boldsymbol{\jmath}}+z(t) \hat{\boldsymbol{k}}$ be the position vector of some path. Give a simple intrinsic formula for $\frac{d}{d t}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{R}})$ in vector notation (i.e., not using coordinates).
(b) (5 points) Show that if $\overrightarrow{\boldsymbol{R}}$ has constant length, then $\overrightarrow{\boldsymbol{R}}$ and $\overrightarrow{\boldsymbol{V}}=\frac{d}{d t} \overrightarrow{\boldsymbol{R}}$ are perpendicular.

Exercise 3.

(a) (10 points) Find the area of the space triangle with vertices $P_{0}=(2,1,0), P_{1}=(1,0,1), P_{2}=$ $(2,-1,1)$.
(b) (10 points) Find the equation of the plane containing the three points P_{0}, P_{1}, P_{2}.
(c) (10 points) Find the intersection of this plane with the line parallel to the vector $\overrightarrow{\boldsymbol{V}}=\langle 1,1,1\rangle$ and passing through the point $S=(-1,0,0)$.

Exercise 4. (10 points) Find the equation of the tangent plane to the surface $x^{3} y+z^{2}=3$ at the point $(-1,1,2)$.

Exercise 5. Let $f(x, y)=x y-x^{4}$
(a) (5 points) Find the gradient of f at $P=(1,1)$
(b) (10 points) Give an approximate formula telling how small changes $\triangle x$ and $\triangle y$ produce a small change $\triangle w$ in the value $w=f(x, y)$ at the point $(x, y)=(1,1)$

Exercise 6.

(a) (5 points) Suppose $(1,1)$ is a critical point of a function f with continuous second derivatives. What can you say about f given that $f_{x x}(1,1)=4, f_{x y}(1,1)=1$, and $f_{y y}(1,1)=2$.
(b) (10 points) Find the critical points of $w=-3 x^{2}-4 x y-y^{2}-12 y+16 x$ and state what type each critical point is.
(c) (10 points) Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint:

$$
f(x, y)=x^{2} y ; \quad x^{2}+2 y^{2}=6
$$

BONUS

(a) (2.5 points) Suppose the motion of a point P is given by the position vector $\boldsymbol{\vec { \boldsymbol { R } }}=3 \cos (t) \hat{\boldsymbol{\imath}}+3 \sin (t) \hat{\boldsymbol{\jmath}}+$ $t \hat{\boldsymbol{k}}$. Compute the velocity and the speed of P.
(b) (2.5 points) Sketch the graph the function $f(x, y)=y^{2}+1$.
(c) (2.5 points) Let $u=y / x, v=x^{2}+y^{2}$, and $w=w(u, v)$. Express the partial derivatives w_{x} and w_{y} in terms of w_{u} and w_{v}.

