Math 53 - Multivariable Calculus

Take Home Assignment # 5

August 1st, 2011

Exercise 1. What is the volume enclosed by the ellipsoid

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$$
?

Exercise 2. Prove that

$$\int_0^1 \int_0^1 \int_0^1 \frac{1}{1 + xyz} \, dx dy dz = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3},$$

and then use this to evaluate the triple integral correct to two decimal places.

Exercise 3. Let $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ denote the unit sphere in \mathbb{R}^3 . Evaluate the following surface integral over S:

$$\int \int_{\mathcal{S}} \left(x^2 + y + z \right) dA.$$

Exercise 4. Let $\mathcal{B} = \{\vec{r} \in \mathbb{R}^3 \mid ||\vec{r}|| \leq 1\}$ denote the unit ball in \mathbb{R}^3 . Let $\vec{J} = \langle J_1, J_2, J_3 \rangle$ be a smooth vector field (i.e., its components are infinitely differentiable) on \mathbb{R}^3 that vanishes outside of \mathcal{B} and satisfies $\nabla \cdot \vec{J} = \vec{0}$.

(1) For some smooth function $f : \mathbb{R}^3 \to \mathbb{R}$, prove that

$$\int \int \int_{\mathcal{B}} (\nabla f) \cdot \vec{J} \, dx dy dz = 0.$$

(2) Prove that

$$\int \int \int_{\mathcal{B}} J_1 \, dx dy dz = 0.$$

Exercise 5. Let \mathcal{D} denote the open unit disc in \mathbb{R}^2 . Let u be an eigenfunction for the Laplacian in \mathcal{D} ; that is, a real-valued function of class C^2 defined in $\overline{\mathcal{D}}$, zero on the boundary, $\partial \mathcal{D}$, but not identically zero everywhere, such that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \lambda u,$$

where λ is a constant. Prove that

$$\int \int_{\mathcal{D}} \left| \nabla u \right|^2 \, dx dy + \lambda \int \int_{\mathcal{D}} u^2 \, dx dy = 0.$$

Exercise 6. The temperature at a point in a ball with conductivity K is inversely proportional to the distance from the center of the ball. Find the rate of heat flow across a sphere S of radius a with center at the center of the ball.