Math 53 - Multivariable Calculus

Take Home Assignment \# 5

August 1st, 2011

Exercise 1. What is the volume enclosed by the ellipsoid

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1 ?
$$

Exercise 2. Prove that

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1+x y z} d x d y d z=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}}
$$

and then use this to evaluate the triple integral correct to two decimal places.

Exercise 3. Let $\mathcal{S}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ denote the unit sphere in \mathbb{R}^{3}. Evaluate the following surface integral over \mathcal{S} :

$$
\iint_{\mathcal{S}}\left(x^{2}+y+z\right) d A
$$

Exercise 4. Let $\mathcal{B}=\left\{\overrightarrow{\boldsymbol{r}} \in \mathbb{R}^{3} \mid\|\overrightarrow{\boldsymbol{r}}\| \leq 1\right\}$ denote the unit ball in \mathbb{R}^{3}. Let $\overrightarrow{\boldsymbol{J}}=\left\langle J_{1}, J_{2}, J_{3}\right\rangle$ be a smooth vector field (i.e., its components are infinitely differentiable) on \mathbb{R}^{3} that vanishes outside of \mathcal{B} and satisfies $\nabla \cdot \overrightarrow{\boldsymbol{J}}=\overrightarrow{\mathbf{0}}$.
(1) For some smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, prove that

$$
\iiint_{\mathcal{B}}(\nabla f) \cdot \overrightarrow{\boldsymbol{J}} d x d y d z=0
$$

(2) Prove that

$$
\iiint_{\mathcal{B}} J_{1} d x d y d z=0
$$

Exercise 5. Let \mathcal{D} denote the open unit disc in \mathbb{R}^{2}. Let u be an eigenfunction for the Laplacian in \mathcal{D}; that is, a real-valued function of class C^{2} defined in $\overline{\mathcal{D}}$, zero on the boundary, $\partial \mathcal{D}$, but not identically zero everywhere, such that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\lambda u
$$

where λ is a constant. Prove that

$$
\iint_{\mathcal{D}}|\nabla u|^{2} d x d y+\lambda \iint_{\mathcal{D}} u^{2} d x d y=0 .
$$

Exercise 6. The temperature at a point in a ball with conductivity K is inversely proportional to the distance from the center of the ball. Find the rate of heat flow across a sphere S of radius a with center at the center of the ball.

