Math 53 - Multivariable Calculus

Take Home Assignment # 4 July 20th, 2011

Exercise 1. Let $\vec{F}(x,y,z) = \langle e^y, xe^y, (z+1)e^z \rangle$. Find a function $f: \mathbb{R}^3 \to \mathbb{R}$ such that $\vec{F}(x,y,z) = \nabla f$ and then evaluate

 $\int_{c} \vec{F} \cdot d\vec{r},$

where c is the contour given by $c: \vec{r}(t) = \langle t, t^2, t^3 \rangle, \ t \in [0, 1].$

$$\int_c (1 - ye^{-x})dx + e^{-x}dy,$$

where c is any path from (0,1) to (1,2)

Exercise 3. Argue whether or not the set $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 \le 1 \text{ or } 4 \le x^2 + y^2 \le 9\}$ is open, connected and simply-connected. What about the torus $T = S^1 \times S^1$?

Exercise 4. Let D be the region bounded by a simple closed curve γ in the xy-plane. Prove that the coordinates of the centroid (\bar{x}, \bar{y}) of D are

$$\bar{x} = \frac{1}{2A} \oint_{\gamma} x^2 dy, \qquad \bar{y} = -\frac{1}{2A} \oint_{\gamma} y^2 dx,$$

where A is the area of D.

Exercise 5. Let $\phi: \mathbb{R}^2 \to \mathbb{R}$ be a function with continuous second order partial derivatives such that: (i) $\phi_{xx} + \phi_{yy} + \phi_x = 0$ in the punctured plane $\mathbb{R}^2 \setminus \{(0,0)\}$, and (ii) $r\phi_x \to \frac{x}{2\pi r}$ and $r\phi_y \to \frac{y}{2\pi r}$ as $r = \sqrt{x^2 + y^2} \to 0$. Let C_R be the circle $x^2 + y^2 = R^2$. Show that the line integral

$$\oint_{C_R} e^x (-\phi_y dx + \phi_x dy)$$

is independent of R, and evaluate it.

Exercise 6. Suppose you have a vector field $\vec{\mathbf{F}} = \langle M(x,y), N(x,y) \rangle$ which has continuous first partial derivatives on $\mathbb{R}^2 \setminus \{(a,b)\}$ such that $M_y = N_x$ on all of $\mathbb{R}^2 \setminus \{(a,b)\}$. Prove that $\vec{\mathbf{F}}$ is conservative, or give a counterexample.

Exercise 7.

- (i) Show that if $u, v : \mathbb{R}^2 \to \mathbb{R}$ are continuously differentiable on \mathbb{R}^2 and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$, then $u = \frac{\partial f}{\partial x}$ and $v = \frac{\partial f}{\partial y}$ for some $f : \mathbb{R}^2 \to \mathbb{R}$.
- (ii) Prove that there is no $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ such that

$$\frac{\partial f}{\partial x} = \frac{-y}{x^2 + y^2} \quad and \quad \frac{\partial f}{\partial y} = \frac{x}{x^2 + y^2}.$$