Math 53 - Multivariable Calculus

Take Home Assignment \# 4

July 20th, 2011

Exercise 1. Let $\overrightarrow{\boldsymbol{F}}(x, y, z)=\left\langle e^{y}, x e^{y},(z+1) e^{z}\right\rangle$. Find a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\overrightarrow{\boldsymbol{F}}(x, y, z)=\nabla f$ and then evaluate

$$
\int_{c} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}},
$$

where c is the contour given by $c: \overrightarrow{\boldsymbol{r}}(t)=\left\langle t, t^{2}, t^{3}\right\rangle, t \in[0,1]$.

Exercise 2. Evaluate

$$
\int_{c}\left(1-y e^{-x}\right) d x+e^{-x} d y
$$

where c is any path from $(0,1)$ to $(1,2)$

Exercise 3. Argue whether or not the set $R=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^{2}+y^{2} \leq 1\right.$ or $\left.4 \leq x^{2}+y^{2} \leq 9\right\}$ is open, connected and simply-connected. What about the torus $T=S^{1} \times S^{1}$?

Exercise 4. Let D be the region bounded by a simple closed curve γ in the xy-plane. Prove that the coordinates of the centroid (\bar{x}, \bar{y}) of D are

$$
\bar{x}=\frac{1}{2 A} \oint_{\gamma} x^{2} d y, \quad \bar{y}=-\frac{1}{2 A} \oint_{\gamma} y^{2} d x
$$

where A is the area of D.

Exercise 5. Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function with continuous second order partial derivatives such that: (i) $\phi_{x x}+\phi_{y y}+\phi_{x}=0$ in the punctured plane $\mathbb{R}^{2} \backslash\{(0,0)\}$, and (ii) r$\phi_{x} \rightarrow \frac{x}{2 \pi r}$ and $r \phi_{y} \rightarrow \frac{y}{2 \pi r}$ as $r=\sqrt{x^{2}+y^{2}} \rightarrow 0$. Let C_{R} be the circle $x^{2}+y^{2}=R^{2}$. Show that the line integral

$$
\oint_{C_{R}} e^{x}\left(-\phi_{y} d x+\phi_{x} d y\right)
$$

is independent of R, and evaluate it.

Exercise 6. Suppose you have a vector field $\overrightarrow{\boldsymbol{F}}=\langle M(x, y), N(x, y)\rangle$ which has continuous first partial derivatives on $\mathbb{R}^{2} \backslash\{(a, b)\}$ such that $M_{y}=N_{x}$ on all of $\mathbb{R}^{2} \backslash\{(a, b)\}$. Prove that $\overrightarrow{\boldsymbol{F}}$ is conservative, or give a counterexample.

Exercise 7.

(i) Show that if $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are continuously differentiable on \mathbb{R}^{2} and $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$, then $u=\frac{\partial f}{\partial x}$ and $v=\frac{\partial f}{\partial y}$ for some $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(ii) Prove that there is no $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial f}{\partial x}=\frac{-y}{x^{2}+y^{2}} \quad \text { and } \quad \frac{\partial f}{\partial y}=\frac{x}{x^{2}+y^{2}}
$$

