Math 53 - Multivariable Calculus

Take Home Assignment # 3

July 13th, 2011

Exercise 1. Find the image of the disk $D = \{u^2 + v^2 \le 1 \mid u, v \in \mathbb{R}\}$ under the transformation x = au, y = bv. Here $a \ne 0$ and $b \ne 0$.

Exercise 2. Evaluate

$$\int \int_R \sin(9x^2 + 4y^2) dA,$$

where R is the region in the first quadrant bounded by the ellipse $9x^2 + 4y^2 = 1$.

Exercise 3. Evaluate

$$\int \int_R e^{-x^2 - y^2} dx dy,$$

where $R = \{(x, y) \in \mathbb{R}^2 \ | \ x^2 + y^2 \le 1\}.$

Exercise 4. Given the fact that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, evaluate

$$I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^2 + (y-x)^2 + y^2\right)} dx dy.$$

Exercise 5. Consider the vector field $\vec{F}(x,y) = \frac{x}{\sqrt{x^2+y^2}}\hat{\imath} + \frac{y}{\sqrt{x^2+y^2}}\hat{\jmath}$. Evaluate the following line integral

$$\int_C \vec{F} \cdot d\vec{r},$$

where C is the parabola $y = 1 + x^2$ from (-1, 2) to (1, 2).

Exercise 6. The base of a circular fence with radius 10m is given by $x = 10\cos(t)$, $y = 10\sin(t)$. The height of the fence at position (x, y) is given by the function $h(x, y) = 4 + 0.01(x^2 - y^2)$, so the height varies from 3m to 5m. Suppose that 1L of paint covers $100m^2$. Sketch the fence and determine how much paint you will need to paint both sides of the fence.