Math 53 - Multivariable Calculus

Take Home Assignment \# 3

July 13th, 2011

Exercise 1. Find the image of the disk $D=\left\{u^{2}+v^{2} \leq 1 \mid u, v \in \mathbb{R}\right\}$ under the transformation $x=a u$, $y=b v$. Here $a \neq 0$ and $b \neq 0$.

Exercise 2. Evaluate

$$
\iint_{R} \sin \left(9 x^{2}+4 y^{2}\right) d A
$$

where R is the region in the first quadrant bounded by the ellipse $9 x^{2}+4 y^{2}=1$.

Exercise 3. Evaluate

$$
\iint_{R} e^{-x^{2}-y^{2}} d x d y
$$

where $R=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$.

Exercise 4. Given the fact that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$, evaluate

$$
I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+(y-x)^{2}+y^{2}\right)} d x d y
$$

Exercise 5. Consider the vector field $\overrightarrow{\boldsymbol{F}}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{\boldsymbol{\imath}}+\frac{y}{\sqrt{x^{2}+y^{2}}} \hat{\boldsymbol{\jmath}}$. Evaluate the following line integral

$$
\int_{C} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}},
$$

where C is the parabola $y=1+x^{2}$ from $(-1,2)$ to $(1,2)$.

Exercise 6. The base of a circular fence with radius $10 m$ is given by $x=10 \cos (t), y=10 \sin (t)$. The height of the fence at position (x, y) is given by the function $h(x, y)=4+0.01\left(x^{2}-y^{2}\right)$, so the height varies from 3 m to 5 m . Suppose that $1 L$ of paint covers $100 \mathrm{~m}^{2}$. Sketch the fence and determine how much paint you will need to paint both sides of the fence.

