Math 53 - Multivariable Calculus

Take Home Assignment # 2

June 30th, 2011

Exercise 1. Suppose you have two particles, one is traveling along the space curve given by $\vec{r}_1(t) = \langle t, t^2, t^3 \rangle$ while the other particle is traveling along $\vec{r}_2(t) = \langle 1 + 2t, 1 + 6t, 1 + 14t \rangle$. Do the particles collide? Do thier paths intersect?

Exercise 2. Show that the curvature of a plane curve is $\kappa = |d\phi/ds|$, where ϕ is the angle between \vec{T} and $\hat{\imath}$; that is, ϕ is the angle of inclination of the tangent line.

Exercise 3.

- (a) Show that if a particle moves with constant speed, then the velocity and acceleration vectors are orthogonal.
- (b) A batter hits a baseball 3 ft above the ground toward the center field fence, which is 10 ft high and 400 ft from home plate. The ball leaves the bat with speed 115 ft/s at an angle 50° above the horizontal. Is it a home run (i.e., does the ball clear the fence)?
- (c) If a particle with mass m moves with position vector $\vec{r}(t)$, then its angular momentum is defined as

$$\vec{\boldsymbol{L}}(t) := m\vec{\boldsymbol{r}}(t) \times \vec{\boldsymbol{v}}(t),$$

and its torque is defined as

$$\vec{\boldsymbol{\tau}}(t) := m\vec{\boldsymbol{r}}(t) \times \vec{\boldsymbol{a}}(t).$$

Show that $\vec{L}'(t) = \vec{\tau}(t)$ and deduce that if $\vec{\tau}(t) = \vec{0}$ for all t, then $\vec{L}(t)$ is constant. This is the law of conservation of angular momentum.

Exercise 4. If a, b, c are sides of a triangle and A, B, C are the opposite angles, find $\partial A/\partial a, \partial A/\partial b, \partial A/\partial c$. Hint: easiest to do by implicite differentiation of the Law of Cosines (just google if you don't know the Law of Cosines).

Exercise 5. Suppose you need to know an equation of the tangent plane to a surface S at the point P = (2, 1, 3). You don't have an equation for S but you know that the curves

$$\vec{r}_1(t) = \langle 2 + 3t, 1 - t^2, 3 - 4t + t^2 \rangle$$

$$\vec{r}_2(u) = \langle 1 + u^2, 2u^3 - 1, 2u + 1 \rangle$$

both lie in S. Find an equation of the tangent plane at P.

Exercise 6.

- (a) Find the absolute maximum and minimum values of $f(x, y) = 4x + 6y x^2 y^2$ on the set $D = \{(x, y) \mid 0 \le x \le 4, 0 \le y \le 5\}.$
- (b) Find three positive numbers whose sum is 12 and the sum of whose squares is as small as possible.
- (c) Find the dimensions of the rectangular box with largest volume if the total surface area is given as $64 \ cm^2$