Math 53 - Multivariable Calculus

Take Home Assignment \# 1

June 23rd, 2011

Exercise 1.

Let V be a vector space over $\mathbb{R}\left(\right.$ think of $\left.\mathbb{R}^{n}\right)$, an inner product on V is a map $\langle\cdot, \cdot\rangle \longrightarrow \mathbb{R}$ such that, for all $x, y, z \in V$ and $\alpha, \beta \in \mathbb{R}$,
(i) $\langle x, y\rangle=\langle y, x\rangle$,
(ii) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$,
(iii) $\langle x, x\rangle \geq 0$ with equality only for $x=0$.

One can check that the 'dot' product, $\langle x, z\rangle=x \cdot z=\sum_{i=1}^{n} \alpha_{i} \beta_{i}$, introduced in class is AN inner product, but not the only one. In particular, show that $\langle\cdot, \cdot\rangle \longrightarrow \mathbb{R}$, defined by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

is an inner product on $C(\mathbb{R})$, the vector space of all continuous real-valued functions.

Exercise 2. Find a unit vector that is perpendicular to both $\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}$ and $\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{k}}$.

Exercise 3. Use that $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}=|\overrightarrow{\boldsymbol{A}}||\overrightarrow{\boldsymbol{B}}| \cos (\theta)$ to prove the Cauchy-Schwarz inequality $|\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}| \leq|\overrightarrow{\boldsymbol{A}}||\overrightarrow{\boldsymbol{B}}|$.

Exercise 4. Find the volume of the parallelpiped determined by the vectors $\overrightarrow{\boldsymbol{A}}=\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}-\hat{\boldsymbol{k}}, \overrightarrow{\boldsymbol{B}}=\hat{\boldsymbol{\imath}}-\hat{\boldsymbol{\jmath}}+\hat{\boldsymbol{k}}$, and $\overrightarrow{\boldsymbol{C}}=-\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+\hat{\boldsymbol{k}}$.

Exercise 5. Is the line through $(-4,-6,1)$ and $(-2,0,-3)$ perpendicular to the line through $(-3,2,0)$ and (5, 1, 4) ?

Exercise 6. Determine whether the planes determined by

$$
2 x-3 y+4 z=5, \quad x+6 y+4 z=3
$$

are parallel, perpendicular, or neither. If neither, find the angle between them.

