Math 53 - Multivariable Calculus

Quiz \# 9

April 13th, 2012

Exercise 1. Compute $\int_{c} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$, where $\overrightarrow{\boldsymbol{F}}=\langle x, y\rangle$ and c is given by $\boldsymbol{r} \overrightarrow{\boldsymbol{(t})}=\left\langle\sqrt{\sqrt{\cos (t)}}-e^{\sqrt{\cos (t)}}, \sqrt{\sqrt{\sin (t)}}\right\rangle$ with $0 \leq t \leq \frac{\pi}{2}$. (Hint: Think about a "fundamental" theorem.)

Exercise 2. Compute $\int_{c} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$, where $\overrightarrow{\boldsymbol{F}}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ and c is a circle of radius $r=1$ centered at the origin $(0,0)$.

Exercise 3. Use Green's theorem to compute $\int_{c} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$, where $\overrightarrow{\boldsymbol{F}}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ and c is ANY simple closed loop (i.e., a curve that starts and ends at the same point and it does not intersect itself) whose interior contains the origin $(0,0)$.

