Math 53 - Multivariable Calculus

Quiz # 9

April 13th, 2012

Exercise 1. Compute $\int_c \vec{F} \cdot d\vec{r}$, where $\vec{F} = \langle x, y \rangle$ and c is given by $\vec{r(t)} = \left\langle \sqrt{\sqrt{\cos(t)}} - e^{\sqrt{\cos(t)}}, \sqrt{\sqrt{\sin(t)}} \right\rangle$ with $0 \le t \le \frac{\pi}{2}$. (Hint: Think about a "fundamental" theorem.)

Exercise 2. Compute $\int_c \vec{F} \cdot d\vec{r}$, where $\vec{F} = \left\langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \right\rangle$ and c is a circle of radius r = 1 centered at the origin (0,0).

Exercise 3. Use Green's theorem to compute $\int_c \vec{F} \cdot d\vec{r}$, where $\vec{F} = \left\langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \right\rangle$ and c is ANY simple closed loop (i.e., a curve that starts and ends at the same point and it does not intersect itself) whose interior contains the origin (0,0).