Math 53 - Multivariable Calculus

Quiz \# 6

March 2nd, 2012

Exercise 1. Show that if $z(x, y)=f(x-y)$ then z satisfies the partial differential equation given by $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$.

Exercise 2. Let $u=y / x, v=x^{2}+y^{2}, w=w(u, v)$. Express the partial derivatives w_{x} and w_{y} in terms of w_{u} and $w_{v}($ and x and $y)$.

Exercise 3. Let $f(x, y)=x^{2} y^{2}-x$. Find the gradient ∇f at $(2,1)$. Write the equation for the tangent plane to the graph of f at $(2,1,2)$. Now, use a linear approximation to find the approximate value of $f(1.9,1.1)$. Finally, find the directional derivative of f at $(2,1)$ in the direction $\langle-1,1\rangle$.

