Math 53 - Multivariable Calculus

Quiz # 6

March 2nd, 2012

Exercise 1. Show that if z(x,y) = f(x-y) then z satisfies the partial differential equation given by $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0.$

Exercise 2. Let u = y/x, $v = x^2 + y^2$, w = w(u, v). Express the partial derivatives w_x and w_y in terms of w_u and w_v (and x and y).

Exercise 3. Let $f(x, y) = x^2y^2 - x$. Find the gradient ∇f at (2, 1). Write the equation for the tangent plane to the graph of f at (2, 1, 2). Now, use a linear approximation to find the approximate value of f(1.9, 1.1). Finally, find the directional derivative of f at (2, 1) in the direction $\langle -1, 1 \rangle$.