Math 53 - Multivariable Calculus

Quiz \# 10

April 20th, 2012

Exercise 1. Suppose there is an elementary particle, of charge g, located at the origin that generates a force field given by $\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}})=g \frac{\overrightarrow{\boldsymbol{r}}}{r^{3}}$, where r denotes the magnitude of $\overrightarrow{\boldsymbol{r}}$. Use a surface integral to compute the flux of this force through a sphere of radius $r>0$ centered at the origin (i.e., DON'T use the divergence theorem, explicitely compute the surface integral).

Exercise 2. Let S_{1}^{2} denote the unit sphere, $S_{1}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$. Use the divergence theorem to compute the surface integral $\iint_{S_{1}^{2}}\left(x^{2}+y+z\right) d S$.

Exercise 3. Compute the flux of $\overrightarrow{\boldsymbol{F}}(x, y, z)=\langle x y \sin (z), \cos (x z), y \cos (z)\rangle$ through any positively oriented closed surface S that contains the origin.

