
Math 54 - Linear Algebra and Differential Equations

Quiz # 5

April 27th, 2011

In this problem we will determine the mode expansion of the classical field representing a closed string

moving through a D-dimensional spacetime. In non-supersymmetric bosonic string theory, the vector

(field) which governs the propagation of strings is denoted by X(τ, σ) = [X1(τ, σ), ..., XD(τ, σ)], where τ

and σ are the coordinates of the strings worldsheet. With a little bit of work (using certain symmetries

present in string theory), one can show that each component of the vector obeys the following “wave”

equation (
∂2

∂σ2
− ∂2

∂τ2

)
Xµ(τ, σ) = 0; (1)

here we use µ to denote a component of X(τ, σ) (hence, µ = 1, ..., D). The wave equation is a seperable

partial linear differential equation in terms of the variables τ and σ, so it has a solution of the form (for

each specific µ)

Xµ(τ, σ) = f(σ)g(τ). (2)

Exercise 1 (4 points). Apply this ansatz into the wave equation and show that the two functions must

satisfy
∂2f(σ)

∂σ2
= cf(σ),

∂2g(τ)

∂τ2
= cg(τ), (3)

where c is an arbitrary constant.

Solution:

If we plug the ansatz Xµ(τ, σ) = g(τ)f(σ) into the wave equation (1), we obtain

f ′′(σ)

f(σ)
=
g′′(τ)

g(τ)
.

For this equation to hold for arbitrary values of τ, σ, it must be that both sides of this equation are equal

to a constant, which is independent of τ, σ

f ′′(σ)

f(σ)
= c =

g′′(τ)

g(τ)
.

Namely,

f ′′(σ) = cf(σ),

g′′(τ) = c g(τ).

Exercise 2 (2 points). Since we want to describe the mode expansion for closed strings we must make

the assumption that σ is compact; that is, the functions Xµ(τ, σ) must obey

Xµ(τ, σ + π) = Xµ(τ, σ). (4)
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Write the most general solution to the first equation in equation (3) and impose the boundary condition

given by equation (4) to show that the constant c must take the values

c = −4m2, (5)

where m ∈ Z.

Solution:

If c 6= 0, the linearly independent solutions to f ′′(σ) = cf(σ) are

e±
√
c σ.

For this to be periodic under σ → σ + π, we need

e±
√
c (σ+π) = e±

√
c σ.

For this to be true for any σ, we need

e±π
√
c = 1,

namely π
√
c = 2πim, m ∈ Z, m 6= 0 (note that this takes care of both signs in the previous equation).

In other words,

c = −4m2, m ∈ Z, m 6= 0.

On the other hand, if c = 0, the linearly independent solution to f ′′(σ) = cf(σ) are

1, σ.

The second one is not periodic under σ → σ + π. So, only the first one is appropriate.

Combining the c 6= 0 and c = 0 cases, we have

c = −4m2, m ∈ Z, f(σ) = e±2imσ

Exercise 3 (4 points). With the knowledge from question (2) one can show that the linearly indepedent

solutions for f(σ) and g(τ) are as follows: (i) f(σ) = e±2imσ, where m ∈ Z, and (ii) g(τ) = e±2imτ

when m ∈ Z, m 6= 0, while g(τ) = 1, τ when m = 0. Use this to show that the most general solution to

equation (1) is of the form

Xµ(τ, σ) = xµ + aµτ +
∑
m6=0

(
bµme

−2im(τ−σ) + b̃µme
−2im(τ+σ)

)
, (6)

where xµ, aµ, bµm, b̃
µ
m are arbitrary constants.

Solution:

By solving g′′(τ) = cg(τ) for the values of m given in b), we obtain

c = −4m2, m ∈ Z, m 6= 0 =⇒ g(τ) = e±2imτ ,

c = 0 =⇒ g(τ) = 1, τ.

Multiplying f and g, we conclude that Xµ(τ, σ) is given by a linear combination of the following functions:

e−2im(τ+σ), e−2im(τ−σ), 1, τ,
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with m ∈ Z, m 6= 0. Therefore, the most general solution to the wave equation (1) satisfying the

periodicity (4) is

Xµ(τ, σ) = xµ + aµτ +
∑
m 6=0

(
bµme

−2im(τ−σ) + b̃µme
−2im(τ+σ)

)
,

where the coefficients xµ, aµ, bµm, b̃
µ
m are constants.

The expression in equation (6) is called the mode expansion of the field Xµ(τ, σ). Upon quantization of

the theory, these modes are realized as particles. For instance, one of the vibration modes of the quantized

closed string corresponds to the graviton - the particle which carries the gravitational force.
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