Math 53 - Multivariable Calculus

Quiz # 9

November 3rd, 2011

Exercise 1. Evaluate the line integral $\int_C (x^2y^3 - \sqrt{x})dy$, where C is the arc of the curve $y = \sqrt{x}$ from (1,1) to (4,2).

Exercise 2. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = \sin(x)\hat{\imath} + \cos(y)\hat{\jmath} + xz\hat{k}$ and C is the curve given by the vector function $\vec{r}(t) = t^3\hat{\imath} - t^2\hat{\jmath} + t\hat{k}$, $0 \le t \le 1$.

Exercise 3. Recall, the work done by a force field \vec{F} on a particle along some trajectory C is given by the line integral $\int_C \vec{F} \cdot d\vec{r}$. Use this to show that a constant force field does zero work on a particle that moves once uniformly around the circle $x^2 + y^2 = 1$.