Math 53 - Multivariable Calculus

Quiz # 6

October 6th, 2011

Exercise 1. Find the equation of the plane containing the three points $P_0 = (2,1,0)$, $P_1 = (1,0,1)$, $P_2 = (2,-1,1)$. Also, find the intersection of this plane with the line parallel to the vector $\vec{V} = \langle 1,1,1 \rangle$ and passing through the point S = (-1,0,0).

Exercise 2. Find the equation of the tangent plane to the surface $x^3y + z^2 = 3$ at the point (-1, 1, 2).

Exercise 3. Suppose (1,1) is a critical point of a function f with continuous second derivatives. What can you say about f given that $f_{xx}(1,1)=4$, $f_{xy}(1,1)=1$, and $f_{yy}(1,1)=2$.