Math 53 - Multivariable Calculus

Quiz # 12

December 1st, 2011

Exercise 1. Let c be a simple, closed smooth curve and let Σ_1 and Σ_2 be two smooth surfaces (with positive orientation) with $\partial \Sigma_1 = \partial \Sigma_2 = c$. Additionally, let \vec{F} be a vector field on \mathbb{R}^3 whose components have continuous partial derivatives. Explain why or why not $\int \int_{\Sigma_1} \operatorname{curl}(\vec{F}) \cdot d\mathbf{S} = \int \int_{\Sigma_2} \operatorname{curl}(\vec{F}) \cdot d\mathbf{S}$.

Exercise 2. Suppose a particle moves along line segments from the origin to the points (1,0,0), (1,2,1), (0,2,1), and back to the origin under the influence of the force field $\vec{F} = \langle z^2, 2xy, 4y^2 \rangle$. Find the work done. (HINT: Use Stokes' theorem)

Exercise 3. Let S_a^2 denote the sphere of radius a and suppose the vector field \vec{F} satisfies the hypotheses of Stokes' theorem. Show that $\int \int_{S_a^2} curl(\vec{F}) \cdot d\vec{S} = 0.$ (HINT: Decompose S_a^2 as the union of the northern hemisphere and the southern hemisphere. Then apply Stokes' theorem on each piece (cough careful about orientations cough)).