Math 53 - Multivariable Calculus

Practice Midterm # 2 November 17th, 2011

Exercise 1. Evaluate $\int \int_R e^{x+y} dA$, where R is given by the inequality $|x| + |y| \le 1$.

Exercise 2. Let $\vec{F} = \nabla f$, where $f(x,y) = \sin(x-2y)$. Find a curve c such that $\int_c \vec{F} \cdot d\vec{r} = 1$.

Exercise 3. Suppose you have a vector field $\vec{F} = \langle M(x,y), N(x,y) \rangle$ which has continuous first partial derivatives on $\mathbb{R}^2 \setminus \{(a,b)\}$ such that $M_y = N_x$ on all of $\mathbb{R}^2 \setminus \{(a,b)\}$. Prove that \vec{F} is conservative, or give a counterexample.

Exercise 4. Let $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ denote the unit sphere in \mathbb{R}^3 . Evaluate the following surface integral over S:

 $\int \int_{\mathcal{S}} \left(x^2 + y + z \right) dA.$

Exercise 5. Let M be the solid cylinder $x^2 + y^2 \le 1$, $0 \le z \le 1$ and let $\vec{F} = \langle xy, yz, zx \rangle$. Verify that the divergence theorem is true for \vec{F} on the region M.

Exercise 6. (Very Hard!) Let

$$ec{F} = rac{(2x^3 + 2xy^2 - 2y)\hat{\imath} + (2y^3 + 2x^2y + 2x)\hat{\jmath}}{x^2 + y^2}.$$

Evaluate $\int_c \vec{F} \cdot d\vec{r}$ where c is shown below:

