Geometric Class Field Theory
Berkeley, Fall 2024

Lecture Schedule (at Evans 736, Fridays 4:00 – 6:00pm)

  1. 9/13: Connor Halleck-Dubé, Overview and Goals Notes (with exercises)
  2. 9/20: Kabir Kapoor, Algebraic Curves I: Riemann Surfaces
  3. 9/27: Seewoo Lee, Algebraic Curves II: Singular Curves Notes
  4. 9/27: Connor Halleck-Dubé, Algebraic Curves II: Residues and Duality (Notes forthcoming...)
  5. 10/4: Sanjeev Balakrishnan, Maps from a Curve to a Commutative Group
  6. 10/11: Sam Mayo, The Jacobian Variety
  7. 10/18: Brian Yang, Representability of the Picard Functor Notes
  8. 10/25: Alex Feiner, Structure of Generalized Jacobians
  9. 11/1: Kabir Kapoor, The Frobenius and Descent
  10. 11/8: Connor Halleck-Dubé, Loose Ends and a Word on Torsors
  11. 11/15: Smita Rajan, Coverings and Isogenies
  12. 11/22: Jerry Yang, The Projective System Attached to a Variety
  13. 12/06: Working out Examples Together
  14. 12/13: CJ Dowd, Drinfeld Modules

References (to be updated...)

  1. Bosch, Lütkebohmert, Raynaud: Néron Models
  2. Cox: Primes of the Form x^2 + n y^2
  3. Donaldson: Riemann Surfaces
  4. Drinfeld: Elliptic modules
  5. Griffiths and Harris: Principles of Algebraic Geometry
  6. Kleiman: The Picard Scheme
  7. Milne: Arithmetic Duality Theorems
  8. Morishita: Knots and Primes
  9. Mumford: Curves and Their Jacobians
  10. Papikian: Drinfeld Modules
  11. Serre: Algebraic Groups and Class Fields
  12. Szamuely: Galois Groups and Fundamental Groups