Math 54, Section 1: Differential equations and linear algebra.

Fall 1994, H.W. Lenstra, Jr.

Final examination, December 12, 1994.

Name:

Section number:

T.A.:

List of discussion sections:

- 101 S. Simic
- 102 A. Gottlieb
- 103 G. Anderson
- 104 G. Anderson
- 105 S. Simic
- 106 T. Walker
- 107 A. Gottlieb
- 108 L. Pyle
- 109 L. Pyle

1	
2	
3	
4	
5	
Total	

Problem 1. (20 points)

Solve the system of differential equations

$$x_1'(t) = 3x_1(t) + 3x_2(t),$$

$$x_2'(t) = -2x_1(t) - 4x_2(t)$$

with initial conditions

$$x_1(0) = 1, \qquad x_2(0) = 3.$$

Show your work.

Problem 2. (20 points)

(a) Find three functions $y_1(x), y_2(x), y_3(x)$ defined on $(-\infty, \infty)$ whose Wronskian is given by

$$W(y_1, y_2, y_3)(x) = e^{4x}.$$

(b) Are the functions y_1, y_2, y_3 that you found linearly independent on $(-\infty, \infty)$? Justify your answer.

2004

Problem 3. (20 points)

Find a homogeneous third-order linear differential equation with constant coefficients that has

$$y(x) = 3 \cdot e^{-x} - \cos(2x)$$

as a solution. Explain how you found it.

What is the general solution of that differential equation?

Problem 4. (20 points)

For the function $f(x) = e^{x/\pi}$, draw a careful sketch of the graphs of the functions to which the following Fourier series converge on the interval $[0, 4\pi]$:

- (a) the Fourier sine series of f on $[0, \pi]$;
- (b) the Fourier cosine series of f on $[0, \pi]$;
- (c) the ordinary Fourier series of f on $[-\pi, \pi]$.

Pay particular attention to the discontinuities of the functions.

Note: you are not asked to compute the coefficients of those Fourier series.

Problem 5. (20 points)

Find a function u=u(x,t), defined for $0 \le x \le \pi$ and $t \ge 0$, satisfying the partial differential equation

$$(*) u_{xx} = -u_{tt} (0 < x < \pi, \quad t > 0),$$

with boundary conditions

$$u(0,t) = u(\pi,t) = 0$$
 $(t > 0)$

and initial conditions

$$u(x,0) = \sin(3x), \quad u_t(x,0) = 0 \qquad (0 < x < \pi).$$

Hint: look for a function of the form u(x,t) = X(x)T(t), as in sec. 10.6 of the textbook; but note that (*) is not a wave equation, because of the minus sign.