CRAMER’S RULE

For the following problems, we define:
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Additionally, given a matrix B and a vector v, we define B;(v) to be the matrix obtained from
(1) Preliminaries:

B by replacing column i with v. =
A= 148 ea 3] =2
(a) Compute |A].
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(c) What is |I2(x)|? 0
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(2) Suppose x is a solution to the equation Ax = b. Compute the matrix product A(l3(x)).
Can you express this product using our new notation?
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(3) Now take determinant of the product from the last question. Can you use the multiplication

rule for determinants to find a formula for the unknown z5 in terms of this determinant
and |A|?
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(4) The method by which you found 9 18 ca.lled Cramer S f{ule Use Cramer’s Rule to find the - fi” -
other entries of x, solving the equation Ax = b. <o X,
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Extra Problems (if time permits): 70 \ e
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Note that if u, v, w are solutions to the equatlons Au =e1, Av = ey, Aw = e3, then combmmg -
these vectors into the matrix ( uv w ) we have

A(u v w)=(Au Av Aw )=(e; e e3 ) =1

(1) Use Cramer’s Rule to solve the equatlons Au = e, Av = ey, Aw = e3 (for A as above).

Put your answers together to find A g
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(2) Can you express the entries of A" in terms of |A| and the cofactors Cj; of A? Hint: What [,
is |A;i(e;)|? Compute the determinant by expanding down the i*® column. :
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