(1) (3 points each) Evaluate the following expressions:
(a) $\log _{16}(32)$

Changing base to base 2, $\log _{16}(32)=\frac{\log _{2}(32)}{\log _{2}(15)}=\frac{5}{4}$.
(b) $8^{-\frac{5}{3}}$

$$
8^{-\frac{5}{3}}=\frac{1}{8^{\frac{5}{3}}}=\frac{1}{\sqrt[3]{8^{5}}}=\frac{1}{2^{5}}=\frac{1}{32}
$$

(c) $e^{2 \ln (3)+\ln (5)}$

$$
e^{2 \ln (3)+\ln (5)}=e^{\ln \left(3^{2}\right)+\ln (5)}=e^{\ln (9 \cdot 5)}=45
$$

(d) $\operatorname{area}\left(\frac{1}{x}, 1, e^{2}\right)$

$$
\text { area }\left(\frac{1}{x}, 1, e^{2}\right)=\ln \left(e^{2}\right)=2
$$

(2) (a) Write an equation for a circle with center $(1,3)$ and radius 4.

$$
(x-1)^{2}+(y-3)^{2}=16
$$

(b) What is its circumference?

$$
2 \pi r=2 \pi \cdot 4=8 \pi
$$

(c) What is its area?

$$
\pi r^{2}=\pi \cdot 4^{2}=16 \pi
$$

(3) Consider a trapezoid with vertices $(0,0),(6,0),(0,2)$, and $(2,2)$.
(a) What is its perimeter?

Let's draw a picture:

The lengths of three of the sides are easy to compute: they are 6 (from $(0,0)$ to $(6,0)$), 2 (from $(0,0)$ to $(0,2)$), and 2 (from $(0,2)$ to $(2,2))$.
For the last side (from $(6,0)$ to $(2,2)$), we need the distance formula:

$$
\sqrt{(2-6)^{2}+(2-0)^{2}}=\sqrt{(-4)^{2}+2^{2}}=\sqrt{20}
$$

So the perimeter is $6+2+2+\sqrt{20}=10+\sqrt{20}$.
(b) What is its area?

The area of a trapezoid is $A=\frac{\left(b_{1}+b_{2}\right)}{2} \cdot h$. Here, the lengths of the bases are 6 and 2 , and the height is 2 (for most trapezoids, the height will not be the length of one of the sides - for this one, conveniently, it is the length of the left-most side).
So the area is $\frac{6+2}{2} \cdot 2=8$.
(4) You deposit $\$ 50$ in a bank account which promises an annual interest rate of 5%.
(a) Write an expression for the amount of money in the account after t years have passed, assuming that the bank compounds interest monthly.

$$
A(t)=50\left(1+\frac{.05}{12}\right)^{12 t}
$$

(b) Write an expression for the amount of money in the account after t years have passed, assuming that the bank compounds interest continuously.

$$
A(t)=50 e^{.05 t}
$$

(c) If interest is compounded continuously, how long will it take before you have $\$ 200$?

Setting $A(t)=200$ in the above equation, we get $200=50 e^{.05 t}$.
Solving for $t, e^{.05 t}=\frac{200}{50}=4, .05 t=\ln (4), t=\frac{\ln (4)}{.05}=20 \ln (4)$ years.
(5) Sketch a graph of the function $f(x)=\frac{3 x-6}{x+2}$, labeling all horizontal and vertical asymptotes and x and y intercepts.

We can write this as $\frac{3(x-2)}{x+2}$. The zero of the numerator (x-intercept) is 2 . The zero of the denominator (vertical asymptote) is -2 . The ratio of leading terms in numerator and denominator (horizontal asymptote) is 3 . To find the y-intercept, evaluate $f(0)=\frac{-6}{2}=-3$.

Graph plotted in black.
Asymptotes plotted in grey. Vertical: $x=-2$. Horizontal: $y=3$.
Intercepts circled in blue. x-intercept: $(2,0) . y$-intercept: $(-3,0)$.

(6) Which number is greater, $\log _{2}(5)$ or $\log _{3}(8)$? Explain.

Although it's hard to approximate these numbers without a computer, we can notice the following: $2^{2}=4$, so $\log _{2}(4)=2$, and $2<\log _{2}(5)$. On the other hand, $3^{2}=9$, so $\log _{3}(9)=2$, and $\log _{2}(8)<2$.

Hence $\log _{2}(5)$ is greater than $\log _{3}(8)$.

