(1) Find all values of x satisfying the inequality

$$
\left|\frac{1}{x}\right| \geq 5
$$

Solution: Case 1: $\frac{1}{x} \geq 0$. This happens when $x>0$. Then $\left|\frac{1}{x}\right|=\frac{1}{x}$.

$$
\begin{aligned}
\frac{1}{x} \geq 5 & \Longleftrightarrow 1 \geq 5 x \\
& \Longleftrightarrow x \leq \frac{1}{5}
\end{aligned}
$$

Case 2: $\frac{1}{x}<0$. This happens when $x<0$. Then $\left|\frac{1}{x}\right|=-\frac{1}{x}$.

$$
\begin{aligned}
-\frac{1}{x} \geq 5 & \Longleftrightarrow-1 \leq 5 x \\
& \Longleftrightarrow-\frac{1}{5} \leq x
\end{aligned}
$$

Putting these cases together, we see that the solutions are $\left[-\frac{1}{5}, 0\right) \bigcup\left(0, \frac{1}{5}\right]$.
Note that $x=0$ is not included in either case - no division by 0 !
(2) Consider the polynomials

$$
\begin{gathered}
p(x)=2 x^{2}+1 \\
q(x)=x^{3}-x+1
\end{gathered}
$$

(a) Write the product $(p q)(x)$ in expanded form (i.e. as a sum of terms, each of which is a constant times a power of x)

Solution:

$$
\begin{aligned}
(p q)(x) & =\left(2 x^{2}+1\right)\left(x^{3}-x+1\right) \\
& =\left(2 x^{5}-2 x^{3}+2 x^{2}\right)+\left(x^{3}-x+1\right) \\
& =2 x^{5}-x^{3}+2 x^{2}-x+1
\end{aligned}
$$

(b) Write the composition $(p \circ q)(x)$ in expanded form.

Solution:

$$
\begin{aligned}
(p \circ q)(x) & =2\left(x^{3}-x+1\right)^{2}+1 \\
& =2\left(x^{6}-x^{4}+x^{3}-x^{4}+x^{2}-x+x^{3}-x+1\right)+1 \\
& =2\left(x^{6}-2 x^{4}+2 x^{3}+x^{2}-2 x+1\right)+1 \\
& =2 x^{6}-4 x^{4}+4 x^{3}+2 x^{2}-4 x+3
\end{aligned}
$$

(3) Let L be the line containing the points $(1,1)$ and $(5,13)$.
(a) Find an equation for L.

Solution: First we'll compute the slope.

$$
m=\frac{13-1}{5-1}=124=3 .
$$

Choosing one of the points, say $(1,1)$, we obtain L in point-slope form: $y-1=3(x-1)$.
(b) Find an equation for the line L^{\prime} which is perpendicular to L and contains the origin $(0,0)$.

Solution: A line perpendicular to L has slope $-\frac{1}{3}$. We obtain L^{\prime} in slope-intercept form: $y=-\frac{1}{3} x$.
(c) Find the point of intersection of L and L^{\prime}.

Solution: We must find a point (x, y) which satisfies both equations simultaneously, i.e. $y=3(x-1)+1$ and $y=-\frac{1}{3} x$. Setting the right sides equal,

$$
\begin{aligned}
3(x-1)+1 & =-\frac{1}{3} x \\
3 x-3+1 & =-\frac{1}{3} x \\
-2 & =-\frac{10}{3} x \\
\frac{6}{10} & =x \\
x & =\frac{3}{5}
\end{aligned}
$$

(4) Let f be the function with domain $[-4,3]$ whose graph is pictured below:

(a) What is the largest interval on which f is increasing?

Solution: $[-2,1]$.
(b) Let F be the function defined by restricting the domain of f to the interval from (a). Estimate the value of $F^{-1}(0)$.

Solution: There are two x-values (inputs of F) corresponding to the y-value (output of $F) 0$ on the graph of F, which I approximate to be -1 and $-3 .-3$ is not in the restricted interval $[-2,1]$, but -1 is. So $F^{-1}(0) \approx-1$.
(c) Sketch a graph of $F^{-1}(x)$.

Solution: (F in black, the reflection line $y=x$ in grey, F^{-1} in blue)

(5) Let $f(x)=3 x^{2}-2 x+1$.
(a) The graph of f is a parabola. Find the coordinates of the vertex of this parabola.

Solution: We'll complete the square.

$$
\begin{aligned}
f(x) & =3\left(x^{2}-\frac{2}{3} x+\frac{1}{3}\right) \\
& =3\left(\left(x-\frac{1}{3}\right)^{2}-\frac{1}{9}+\frac{1}{3}\right) \\
& =3\left(\left(x-\frac{1}{3}\right)^{2}+\frac{2}{9}\right) \\
& =3\left(x-\frac{1}{3}\right)^{2}+\frac{2}{3}
\end{aligned}
$$

The quadratic is now in vertex form, and we see that the vertex is $\left(\frac{1}{3}, \frac{2}{3}\right)$.
(b) Find all real solutions to the equation $f(x)=0$.

Solution: It's not obvious how to factor this, so we'll use the quadratic equation.

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4 \cdot 3 \cdot 1}}{2 \cdot 3}=\frac{2 \pm \sqrt{-8}}{6}
$$

But we can't take the square root of -8 , so there are no real solutions.
Alternative Solution: Since the coefficient of x^{2} is positive, the y-coordinate of the vertex, $\frac{2}{3}$, is the minimum value of f, so f never takes on the value 0 . Put another way, the parabola lies entirely above the x-axis, so there are no x-intercepts.
(6) Let $f(x)=x^{-3}+1$.
(a) Is f even, odd, or neither? Explain.

Solution: We'll test the value of $f(-x)$.

$$
f(-x)=(-x)^{-3}+1=\frac{1}{(-x)^{3}}+1=-\frac{1}{x^{3}}+1=-\left(x^{-3}\right)+1
$$

This is not equal to $f(x)$, so f is not even.
But also this is not equal to $-f(x)=-\left(x^{-3}\right)-1$, so f is not odd. f is neither even nor odd.
(b) Sketch a graph of f.

Solution: This is the graph $y=x^{-3}$ (see the end of section 2.3 in the textbook) shifted up by 1 unit.

