MATH 32 FALL 2012

FINAL EXAM - PRACTICE EXAM SOLUTIONS
(1) You cut a slice from a circular pizza (centered at the origin) with radius 6 " along radii at angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with the positive horizontal axis.
(a) (3 points) What is the area of your slice?

Solution: The interior angle of the slice is

$$
\frac{\pi}{3}-\frac{\pi}{4}=\frac{4 \pi}{12}-\frac{3 \pi}{12}=\frac{\pi}{12}
$$

So the area of the slice is

$$
\frac{1}{2} \theta r^{2}=\frac{1}{2} \frac{\pi}{12} 6^{2}=\frac{36 \pi}{24}=\frac{3 \pi}{2} .
$$

(b) (3 points) What is the arc length of the outer portion of crust on your slice?

Solution:

$$
r \theta=6 \frac{\pi}{12}=\frac{\pi}{2} .
$$

(2) (6 points) Find all values of θ in the interval $[0,2 \pi]$ satisfying

$$
\sin ^{2}(\theta)+\frac{1}{2} \cos (\theta)=1
$$

Solution: Rewrite $\sin ^{2}(\theta)=1-\cos ^{2}(\theta)$. Then, noticing that we have a quadratic in $\cos (\theta)$, write $x=\cos (\theta)$.

$$
\begin{aligned}
\left(1-\cos ^{2}(\theta)\right)+\frac{1}{2} \cos (\theta) & =1 \\
-\cos ^{2}(\theta)+\frac{1}{2} \cos (\theta) & =0 \\
-x^{2}+\frac{1}{2} x & =0 \\
-x\left(x-\frac{1}{2}\right) & =0
\end{aligned}
$$

So $x=0$ or $\frac{1}{2}$, and so $\cos (\theta)=0$ or $\frac{1}{2}$. For each of these two cosine values, there are two corresponding points on the unit circle. Since we only want angle measures between 0 and 2π, each of these points corresponds to only one angle, so there should be four solutions. They are

$$
\theta=\frac{\pi}{3}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{3} .
$$

(3) (3 points) Find an equation for the line perpendicular to $y=\frac{1}{3} x+7$ through the point $(8,26)$.

Solution: This line should have slope -3 . In point-slope form,

$$
y-26=-3(x-8) .
$$

This is an acceptable solution. You may also rewrite the answer as

$$
y=-3 x+50 .
$$

(4) (3 points) What is $\frac{\pi}{10}$ radians in degrees?

Solution: $\frac{\pi}{10} \cdot \frac{180^{\circ}}{\pi}=\frac{180^{\circ}}{10}=18^{\circ}$.
(5) In the triangle below, let $A=\frac{\pi}{6}, B=\frac{\pi}{8}$, and $a=5$.

(a) (3 points) Find $\sin (B)$.

Solution: This is just asking us to find $\sin \frac{\pi}{8}$, which we can do using the half-angle formula.

$$
\sin \frac{\pi}{8}=\sqrt{\frac{1-\cos \frac{\pi}{4}}{2}}=\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}}=\sqrt{\frac{2-\sqrt{2}}{4}}=\frac{\sqrt{2-\sqrt{2}}}{2} .
$$

(b) (3 points) Find b.

Solution: By the law of sines,

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin \frac{\pi}{6}}{5} & =\frac{\sin \frac{\pi}{8}}{b} \\
\frac{\frac{1}{2}}{5} & =\frac{\sin \frac{\pi}{8}}{b} \\
\frac{1}{10} b & =\sin \frac{\pi}{8} \\
b & =10 \cdot \frac{\sqrt{2-\sqrt{2}}}{2} \\
b & =5 \sqrt{2-\sqrt{2}} .
\end{aligned}
$$

(6) Consider the rational function

$$
f(x)=\frac{x^{2}-7 x+12}{3 x^{2}}
$$

(a) (3 points) Does f have a horizontal asymptote? If so, what is it?

Solution: Yes, $y=\frac{1}{3}$.
(b) (6 points) Solve the inequality $f(x) \leq 0$.

Solution: Factoring the numerator, we have

$$
f(x)=\frac{(x-3)(x-4)}{3 x^{2}} .
$$

f could switch sign at $x=0, x=3$, or $x=4$. We'll do some sign analysis.

	$(-\infty, 0)$	$(0,3)$	$(3,4)$	$(4, \infty)$
$(x-3)$	-	-	+	+
$(x-4)$	-	-	-	+
$3 x^{2}$	+	+	+	+
$f(x)$	+	+	-	+

So $f(x)<0$ when $3<x<4$, and $f(x)=0$ when $x=3$ or $x=4$, so the solutions are $3 \leq x \leq 4$.
(7) (6 points) Simplify the following expression:

$$
e^{\frac{1}{2} \ln (x+3)-2 \ln (x+1)} .
$$

Solution:

$$
\begin{aligned}
e^{\frac{1}{2} \ln (x+3)-2 \ln (x+1)} & =e^{\ln \left((x+3)^{\frac{1}{2}}\right)} e^{\ln \left((x+1)^{-2}\right)} \\
& =\sqrt{x+3} \cdot \frac{1}{(x+1)^{2}} \\
& =\frac{\sqrt{x+3}}{(x+1)^{2}}
\end{aligned}
$$

(8) (6 points) Show that for all $\theta, \sin (3 \theta)=3 \sin (\theta)-4 \sin ^{3}(\theta)$.

Solution: We'll apply the angle sum formula and the double angle formulas.

$$
\begin{aligned}
\sin (3 \theta) & =\sin (2 \theta+\theta) \\
& =\sin (2 \theta) \cos (\theta)+\cos (2 \theta) \sin (\theta) \\
& =(2 \sin (\theta) \cos (\theta)) \cos (\theta)+\left(1-2 \sin ^{2}(\theta)\right) \sin (\theta) \\
& =2 \sin (\theta) \cos ^{2}(\theta)+\sin (\theta)-2 \sin ^{3}(\theta) \\
& =2 \sin (\theta)\left(1-\sin ^{2}(\theta)\right)+\sin (\theta)-2 \sin ^{3}(\theta) \\
& =2 \sin (\theta)+\sin (\theta)-2 \sin ^{3}(\theta)-2 \sin ^{3}(\theta) \\
& =3 \sin (\theta)-4 \sin ^{3}(\theta)
\end{aligned}
$$

Note that since the end goal was an expression just involving sin, we chose the cosine double angle formula involving sine: $\cos (2 \theta)=1-2 \sin ^{2}(\theta)$. We also used the Pythagorean Identity in the form $\cos ^{2}(\theta)=1-\sin ^{2}(\theta)$ to transform the remaining cosine terms to sines.
(9) (a) (3 points) Find an equation for a circle with center $(2,-3)$ and radius 5.

Solution: $(x-2)^{2}+(y+3)^{2}=25$.
(b) (3 points) What is the circumference of this circle?

Solution: $2 \pi r=2 \pi \cdot 5=10 \pi$.
(c) (3 points) What is its area?

Solution: $\pi r^{2}=\pi \cdot 5^{2}=25 \pi$.
(10) Consider the function $f(x)=2 \cos (2 \pi x)+2$.
(a) (6 points) Sketch a graph of this function. Clearly label the y-intercept and several x-intercepts.

Solution:

(b) (3 points) What is the amplitude of this function?

Solution: The amplitude is 2 .
(c) (3 points) What is the period of this function?

Solution: The period is $\frac{2 \pi}{2 \pi}=1$.
(11) (6 points) Sketch a graph of $y=|x-1|+|x+1|$. Hint: Write this as a piecewise function with three cases.

Solution:

$$
y=\left\{\begin{array}{l}
-(x-1)+-(x+1), \text { if } x<-1 \\
-(x-1)+(x+1) \text { if }-1 \leq x<1 \\
(x-1)+(x+1) \text { if } 1<x
\end{array}=\left\{\begin{array}{l}
-2 x, \text { if } x<-1 \\
2 \text { if }-1 \leq x<1 \\
2 x \text { if } 1<x
\end{array}\right.\right.
$$

(12) You put $\$ 50$ in a bank account with 8% interest compounded 4 times per year.
(a) (3 points) Write down an expression for the amount of money you will have after t years.

Solution:

$$
A=50\left(1+\frac{.08}{4}\right)^{4 t}
$$

(b) (3 points) After how many years will you have $\$ 80$?

Solution: We'll solve the following for t :

$$
\begin{aligned}
80 & =50\left(1+\frac{.08}{4}\right)^{4 t} \\
\frac{80}{50} & =(1.02)^{4 t} \\
\log _{1.02}\left(\frac{8}{5}\right) & =4 t \\
t & =\frac{1}{4} \log _{1.02}(1.6)
\end{aligned}
$$

(13) Evaluate the following:
(a) (3 points) $\cos \left(\cos ^{-1}(.8)\right)$

Solution: . 8

(b) $(3$ points $) \sin ^{-1}\left(\sin \left(\frac{13 \pi}{16}\right)\right)$

Solution: $\frac{13 \pi}{16}$ is in the second quadrant, so it is not a possible output of $\sin ^{-1}$. The angle in the first quadrant with the same sine value is $\pi-\frac{13 \pi}{16}=\frac{3 \pi}{16}$.
(c) $(3$ points $) \cos \left(\tan ^{-1}\left(\frac{7}{5}\right)\right)$

Solution: Draw a right triangle and label one angle $\theta=\tan ^{-1}\left(\frac{7}{5}\right)$. Label the opposite side 7 and the adjacent side 5 . Then the hypoteneuse c satisfies $c^{2}=5^{2}+7^{2}$, so $c=\sqrt{74}$.
Then $\cos \left(\tan ^{-1}\left(\frac{7}{5}\right)\right)=\cos (\theta)=\frac{5}{\sqrt{74}}$.
(14) (3 points) Find $\log _{16}(32)$.

Solution: Change of base formula: $\log _{16}(32)=\frac{\log _{2}(32)}{\log _{2}(16)}=\frac{5}{4}$.

