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Abstract

In this paper, we study Euler classes in groups of homeomorphisms of Seifert fibered
3-manifolds. We show that, in contrast to the familiar Euler class for Homeo0(S1)δ,
these Euler classes for Homeo0((M3)δ) are unbounded classes. In fact, we give examples
of flat topological M bundles over a genus 3 surface whose Euler class takes arbitrary
values.

For a topological group G, let Gδ denote G with the discrete topology, and H∗(Gδ;R)
the (group) cohomology of Gδ with R = Z or R coefficients. When G is the group
of homeomorphisms or diffeomorphisms of a manifold M , elements of H∗(Gδ;R) are
characteristic classes of flat or foliated M bundles with structure group G. One says
that a class is bounded if it has a cocycle representative taking a bounded set of values.
Determining which classes are bounded is an interesting and often very difficult question
in its own right (see [12] for an introduction to this and related problems) but particularly
relevant in the case where G is a subgroup of Homeo(M) for some M . In this case, bounds
on characteristic classes give obstructions for topological M -bundles to be flat. On the
flipside, showing that a class has no bounded representative is also an interesting as it
often amounts to constructing interesting examples of flat bundles.

The earliest example of a bounded class comes from Milnor [18], who showed the Euler
class for SL(2,R)δ is bounded. Wood [20] generalized this argument to Homeo0(S1), the
identity component of Homeo(S1), (which naturally contains SL(2,R) as a subgroup) to
obtain a complete characterization of the oriented, topological circle bundles over surfaces
that admit a foliation transverse to the fibers1. In modern language, their work can be
reframed as follows:

Milnor–Wood inequality [18, 20]. The real Euler class in H2(Homeo0(S1)δ;R) is
bounded, and has (Gromov) norm equal to 1/2.

More generally, when G is a real algebraic subgroup of GL(n,R), it follows from [9] that
elements of H∗(Gδ;R) have bounded representatives, and explicit bounds on their norms
have been computed in several cases. See eg. [3, 6, 7] and references therein. However,
much less is known for homeomorphism groups. Following an easy argument of Anderson
[1] and a hard result of Edwards–Kirby [8], we know that H1(Homeo0(M)δ;Z) = 0 for

1In the smooth setting, this is equivalent to admitting a flat connection, hence, even in the topological
case such bundles are called “flat.”
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any compact manifold M , so the first nontrivial examples of characteristic classes for flat
bundles arise in degree two. Besides the aforementioned M = S1, the most basic example
of this is M = R2. (Despite noncompactness, H1(Homeo0(R2)) is also zero.) Calegari [4]
demonstrated that the Euler class in H2(Homeo0(R2)δ;R) – and in fact also its pullback
to H2(Diff0(R2)δ;R) – is unbounded. But beyond this essentially nothing is known.

Here we consider Euler classes in homeomorphism groups of 3-manifolds. The existence
of such classes comes from the work of Hatcher, Ivanov, and McCullough and Soma
[10, 14, 17] who prove that, for many closed, prime Seifert fibered 3-manifolds M , rotation
of the fibers gives a homotopy equivalence SO(2)→ Homeo0(M). Together with a deep
result of Thurston, this implies that H∗(Homeo0(M)δ;Z) is generated by an “Euler class”
in degree 2. In a few other cases, including the obvious M = T 2, but also M = T 3 and
some lens spaces, the inclusion SO(2) → Homeo0(M) obtained by rotating fibers of a
fibration or Seifert fibration induces an inclusion π1(SO(2))→ π1(Homeo0(M)) as a factor
in a direct product decomposition, giving classes in H2(Homeo0(M)δ;Z) that are also
analogous to the Euler class for Homeo0(S1). These are described in more detail in §2.1.

Our main result is that all of these Euler classes are unbounded. Precisely, we show:

Theorem 1.1. Let M be a closed Seifert fibered 3-manifold where rotation of fibers gives a
homotopy equivalence SO(2) ↪→ Homeo0(M). Then the Euler class in H2(Homeo0(M);Z)
is unbounded. More generally, if M is such that the inclusion SO(2) ↪→ Homeo0(M)
induces an inclusion of π1(SO(2)) as a direct factor in π1(Homeo0(M)), then any class
α ∈ H2(Homeo0(M);R) with nonzero image in H2(SO(2);R) is unbounded.

This is a direct consequence of the following stronger result.

Theorem 1.2. LetM be as in the general case of Theorem 1.1, and let e ∈ H2(Homeo0(M);Z)
have nonzero image in H2(SO(2);Z). Then, for any k, there exists a homomorphism ρ from
the fundamental group of a genus 3 surface Σ to Homeo0(M) such that 〈ρ∗(e), [Σ]〉 = k.

Our proof is fundamentally different than Calegari’s proof of unboundedness of the
Euler class for Homeo0(R2)δ, which uses non-compactness of R2 in an essential way. It also
differs considerably from an existing argument for unboundedness of cohomology classes in
Homeo0(T 2) (see discussion in Section 2.1), which used the fact that H2(Homeo0(T 2);Z) ∼=
Z2 has a GL(2,Z) action (via conjugation, using the mapping class group of T 2).

Section 2 contains some brief background on bounded cohomology, Gromov norm,
and cohomology of homeomorphism groups, giving the tools to derive Theorem 1.1 from
Theorem 1.2. The proof of Theorem 1.2 is an explicit construction described in Section 3.

Measure-preserving homeomorphisms. By contrast, suppose that µ is a probability
measure on M and let Gµ denote the subgroup of measure-preserving homeomorphisms
in Homeo0(M). In contrast to Theorem 1.1, in the measure-preserving case we have the
following.

Theorem 1.3. Let M be as in Theorem 1.1. Let e ∈ H2(Homeo0(M)δ;Z) be a class with
nonzero image in H2(SO(2);R). Then the pullback of e to H2(Gδµ;Z) is zero.
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By averaging a measure over the SO(2) action, one may assume that µ is invariant
under rotation of fibers, so there is an inclusion SO(2)→ Gµ → Homeo0(M). In this case,
Theorem 1.3 implies that the Euler class in H2(Gδµ;Z) is zero.

In particular, for the special case of the 2-dimensional torus, since π1(T 2) = Z2 is
amenable (so any action on a manifold M has an invariant measure), this gives

Corollary 1.4. For M as in Theorem 1.3, flat M -bundles over T 2 always have zero Euler
class.

Note that this statement would be implied by boundedness of e ∈ H2(Homeo0(M)δ;Z).

Acknowledgements. Thanks to Bena Tshishiku and Wouter Van Limbeek for helpful
discussions on this project.

2 Preliminaries

We quickly review the standard theory of bounded cohomology and set up notation. A
reader who is well-acquainted with bounded cohomology can skip quickly to Section 2.1
where we discuss cohomology of homeomorphism groups.

For M a manifold, and a ∈ H∗(M ;R) an element of singular homology, define a
pseudonorm

‖a‖ := inf{Σ|ci| : [Σ ciσi] = a}

where the infimum is take over all real singular chains representing a in homology. The
L1 norm on singular chains used in this definition gives a dual L∞ norm on singular
cochains; and the set of bounded cochains forms a subcomplex of C∗(M). The cohomology
of this complex is the bounded cohomology H∗b (M ;R) of M . The (pesudo-)norm, ‖α‖, of a
cohomology class α is the infimum of the L∞ norms of representative cycles; and if ‖α‖ is
finite we say that it is a bounded class.

One can extend these definitions quite naturally to the Eilenberg–MacLane group
cohomology. Recall that, for a discrete group G, the set of inhomogeneous k-chains,
Ck(G), is the free abelian group generated by k-tuples (g1, ..., gk) ∈ Gk with an appropriate
boundary operator. The homology of this complex is the (integral) group homology
Hk(G;Z); and Hk(G;R) is the homology of the complex C∗(G) ⊗ R. The homology of
the dual complexes Hom(Ck,Z) and Hom(Ck,R) give the group cohomology Hk(G;Z) and
Hk(G;R) respectively. As in the singular homology case above, there is a natural L1 norm
on k-chains given by ‖

∑
si(gi,1, ..., gi,k)‖ =

∑
|si|, which descends to a pseudonorm on

homology by taking the infimum over representative cycles. We also have a dual L∞ norm
on Ck(G), and for α ∈ H∗(G;R) define

‖α‖ := inf{‖c‖∞ : [c] = α}.

Again, bounded (co)cycles are those with finite norm. Note that ‖α‖ is finite if and only if
there exists D such that |α(g1, g2, ..., gk)| < D holds for all (g1, g2, ..., gk) ∈ Gk.

A remarkable theorem of Gromov allows one to pass between groups and spaces:

3



Theorem 2.1 ([9]). There is a natural isometric isomorphism H∗b (π1(M);R)→ H∗b (M ;R).

We will make use of this in the next subsection.

Computing norms. In degree two, there is an effective means of computing the norm of
a cohomology class through representations of surface groups. An integral class c ∈ H2(G;Z)
can always be realized as the image of a map from a closed orientable surface Σ of genus
≥ 1 into a K(G, 1) space; such a map induces a homomorphism ρ : π1(Σ)→ G. Thus, on
the level of group cohomology we have c = ρ∗([Σ]) and

〈α, c〉 = 〈ρ∗(α), [Σ]〉.

It is easy to verify that [Σ] has norm 2χ(Σ) (See [9, §2] for the computation.) Hence,
‖c‖ ≤ 2χ(Σ), and showing that α is an unbounded class amounts to showing that

sup
ρ:π1(Σ)→G

〈ρ∗(α), [Σ]〉
2χ(Σ)

=∞,

where the supremum is taken over all homomorphisms from surface groups into G.
Integrally, the quantity 〈ρ∗(α), [Σ]〉 can be easily read off from a central extension. There

is a well known correspondence between H2(G;A) and central extensions of G by A for any
abelian group A. If α ∈ H2(G;Z) is represented by the extension 0→ Z→ Ĝ→ G→ 1,
then ρ∗(α) is represented by the pullback 0→ Z→ ρ∗(Ĝ)→ π1(Σ)→ 1.

For a surface Σ of genus g, we have a standard presentation

π1(Σ) = 〈a1, b1, ..., ag, bg |
g∏
i=1

[ai, bi]〉

In this case, the integer 〈ρ∗(α), [Σ]〉 can be computed by taking lifts ãi, b̃i of the generators
ai and bi to elements of ρ∗(Ĝ). Since this is a central extension, the value of any commutator
[ãi, b̃i] is independent of the choice of lifts ãi and b̃i. The product of commutators

∏g
i=1[ãi, b̃i]

projects to the identity in π1(Σ), so can be identified with an element n ∈ Z. In this case,
one checks easily from the definition that n = 〈ρ∗(α), [Σ]〉.

We note that, although not framed in the language of bounded cohomology, this strategy
for computation is already present in Milnor and Wood’s work in [18] and [20] respectively.

2.1 Euler classes of homeomorphism groups

This section describes the known analogs of the Euler class in Homeo0(M), for various
manifolds M , justifying some of the remarks made in the introduction. Our starting point
is the following remarkable theorem of Thurston.

Theorem 2.2 (Thurston [19]). Let M be a differentiable manifold. The identity ho-
momorphism Homeo(M)δ → Homeo(M) induces an isomorphism H∗(Homeo(M)δ;Z) ∼=
H∗(BHomeo(M);Z).

4



Here we focus on the induced isomorphism on cohomology of the identity components
Homeo0(M)δ → Homeo0(M).

As a sample application of this theorem, one can conclude that the Euler class and its
powers are the only characteristic classes of flat topological circle bundles. To see this, one
first shows that the inclusion of the group of rotations SO(2) into Homeo0(S1) is a homotopy
equivalence (a relatively easy exercise), hence H∗(Homeoδ0(S1);Z) ∼= H∗(B SO(2);Z). As
is well known, B SO(2) ∼= CP∞ is generated by the Euler class in degree two.

To apply Thurston’s theorem in other situations, we look for other manifolds where
the homotopy type (or at least the cohomology) of Homeo0(M) is known. In dimension 2,
as was mentioned in the introduction, S1 → R2 is a homotopy equivalence, but in contrast
to the M = S1 case, the Euler class of Homeo0(R2)δ is unbounded by [4]. For M = T 2 =
S1 × S1, rotating either of the S1 factors gives a continuous homomorphism SO(2) →
Homeo0(T 2) which is injective on π1 – in fact, the inclusion SO(2)× SO(2)→ Homeo0(T 2)
is a homotopy equivalence. Thus, the pullback of the Euler class in H2(B SO(2);Z) to
H2(BHomeo(T 2);Z) ∼= H2(Homeo(T 2)δ;Z) by either of these inclusions is nontrivial. A
direct computation, given in [16, §4.2], shows that these classes are also unbounded.

Seifert fibered 3-manifolds give the natural generalization of the examples above to
dimension 3, as the fibering gives an SO(2) subgroup of Homeo0(M) acting freely on M .
These are essentially the only other examples where the homotopy type of Homeo0(M) is
both known and known to have a homotopically nontrivial SO(2) subgroup.

The Haken case is covered by the following theorem of Hatcher and Ivanov.

Theorem 2.3 ([10], [14]). Suppose M is an orientable, Haken, Seifert-fibered 3-manifold,
M 6= T 3. Then the the inclusion S1 → Homeo0(M) by rotations of the fibers is a homotopy
equivalence.

In the case of T 3, it is also known that Homeo0(T 3) ∼= T 3. We remark that Hatcher’s
original proof was in the PL category, but (as noted by Hatcher) this is equivalent to the
topological category by the triangulation theorems of Bing and Moise [2, 11]. Ivanov’s
proof of the theorem above is for groups of diffeomorphisms, but an argument due to Cerf,
together with Hatcher’s later proof of the the Smale conjecture implies that the inclusion
of Diff(M3) into Homeo(M3) is a homotopy equivalence; this makes the smooth category
equivalent as well.

McCullough–Soma [17] proved Homeo0(M) ∼= S1 for the small Seifert-fibered non-

Haken manifolds with H2 × R and ˜SL(2,R) geometries. For spherical manifolds, (and for
prime 3-manifolds in general) it is conjectured that the inclusion Isom(M)→ Homeo(M)
is a homotopy equivalence, and this is known to be true in most cases by work of Ivanov
[15] and later Hong, Kalliongis, McCullough and Rubinstein. See [13] for references and a
detailed exposition, as well as a table of homotopy types of Isom(M) for the known cases.
In several of these, rotation of the fibers gives a homotopically nontrivial SO(2) subgroup
which is a factor of π1, hence examples to which Theorem 1.1 applies.
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3 Proof of Theorems 1.1 and 1.2

Let M be a Seifert fibered 3-manifold, and let G = Homeo0(M). Let ι : SO(2)→ G bet the
action of rotating the fibers, and suppose that ι induces an inclusion Z ∼= π1(SO(2))→ π1(G)
as a factor in a splitting as a direct product. Let G̃ be the covering group of G corresponding
to the subgroup π1(G)/ι(Z) ⊂ π1(G). (Recall that G is locally contractible by Cernavskii
[5] or Edwards–Kirby [8], so standard covering space theory applies here.) If ι is also
surjective on π1, for instance, a homotopy equivalence, then G̃ is the universal covering
group of G. In general, it is a central extension 0→ Z→ G̃→ G→ 1.

We will show that this central extension represents a class e in H2(Homeo0(M)δ;Z) ∼=
H2(Homeo0(M);Z) ∼= Z that is unbounded. This will prove Theorem 1.1. Following the
framework discussed in Section 2, to show that e is unbounded, it suffices to construct
representations of surface groups ρ : π1(Σ) → Homeo0(M) with ρ∗(e)/χ(Σ) arbitrarily
large. Although, in using this strategy, a priori one may need to vary the genus of surface
to construct representations with increasingly large values of ρ∗(e)/χ(Σ), in this case we
need only to work with a surface of genus 3.

Put otherwise, we will show how to construct commutators [ai, bi] with ai and bi ∈ G
(for i = 1, 2, 3), such that

∏3
i=1[ai, bi] = id, but lifts

∏3
i=1[ãi, b̃i] to G̃ represent unbounded

covering transformations. This will prove Theorem 1.2.

The first step is a local construction of bump functions.

Definition 3.1. A standard bump function on D2 is a function D2 → R, which, after
conjugation by some h ∈ Homeo0(D2) agrees with

f(reiθ) =


1 if r < 1/3

2− 3r if 1/3 ≤ r ≤ 2/3
0 if r > 2/3

What we have in mind as particular examples are piecewise linear (or piecewise smooth)
functions f : D2 ∼= [−1, 1]× [−1, 1]→ R that are identically 0 on a neighborhood of the
boundary, identically 1 on a neighborhood of (0, 0), and with the level sets f−1(p) for
p ∈ (0, 1) piecewise linear (or piecewise smooth) curves. Moreover, these should have the
property that some line λ from 0 to ∂([−1, 1]× [−1, 1]) is transverse to each level set of f ,
with f monotone along λ. In this case, one can easily construct the conjugacy h to the
function above defined on the round disc as follows. For p ∈ (0, 1), let `p be the total arc
length of f−1(p) and, for x ∈ f−1(p), let `p(x) denote the arc length of the segment of
f−1(p) (oriented as the boundary of f−1([p, 1])) from λ∩f−1(p) to x. Then, for x ∈ f−1(p),
set h(x) = 2−p

3 ei`p(x)/`(p). One may then extend h arbitrarily to a homeomorphism defined
on f−1(0) and f−1(1).

Lemma 3.2. Let T = D2 × S1 be a (p, q) standard fibered torus, let f be a standard
bump function, and let k ∈ R. There exist a, b ∈ Diff(T ) such that the commutator [a, b]
preserves fibers and rotates the fiber {x} × S1 by 2πkf(x) if x 6= 0, and the exceptional
fiber by 2πqk.
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a bab−1 aba−1b−1

0 k 0 k 0 k

Figure 1: Level sets of PL bump functions

Proof. We take local coordinates to identify D2 with the rectangle [−3, 3]× [−3, 3] ⊂ R2,
so that the exceptional fiber passes through (0, 0), and we work in the PL setting. First,
define φ to be a standard bump function that is 1 on [−1, 1]2, zero on the complement
of [−2, 2]2, and in the topological annulus between these regions of definition, it is linear
on each of the four sets cut out by the diagonals of [−3, 3]2. Level sets of a are shown
in Figure 1 left. For a point (x, s) in [−3, 3]2 × S1, define a(x, s) = (x, s + 2πqkφ(x)) if
x 6= (0, 0) (i.e. a rotation of the fiber over x by 2πqkφ(x)), and define a to be a rotation
by 2πk on the exceptional fiber.

To construct b, first define F : [−3, 3]→ [−3, 3] by

F (u) =


u if u ≥ 1

u+2
3 if − 2 < u < 1

3(u+ 2) if − 3 ≤ u ≤ −2

and define b on [−3, 3]× [−3, 3]× S1 by b(u, v, eiθ) = (F (u), v, eiθ).
Since both a and b preserve fibers, ba−1b−1 does as well. Moreover, ba−1b−1 rotates

the fiber through a point x ∈ [−3, 3]2 by −qkφ(b−1(x)) for x 6= 0, and by kφ(b−1(x)) on
exceptional fiber. It is now easily verified that the composition aba−1b−1 rotates the fibers
over x by the standard bump function with level sets depicted in Figure 1 right.

The next step is to glue the bump functions given by Lemma 3.2 together into a nice
partition of unity, subordinate to an open cover consisting of only three sets.

Lemma 3.3. Let S be an orientable topological surface. There exists an open cover
O = {O1, O2, O3} of S, with each Oi a union of disjoint homeomorphic open balls, and
a partition of unity λi subordinate to O such that the restriction of λi to any connected
component of Oi is a standard bump function.

Proof. Let Γ = (V,E) be a degree three graph on S, with polygonal faces. For example,
Γ may be constructed as the dual graph to a triangulation of S. First we define O =
{O1, O2, O3}. Let Nδ denote the union of the δ-neighborhoods of the edges in Γ. Fixing
an appropriate metric and PL structure on S, we may assume that the boundary of Nδ,
for any sufficiently small δ > 0, consists of line segments parallel to the edges of Γ.

Fixing δ, let O1 = S \Nδ/2. Choose δ small enough so that connected components of
O1 are in one to one correspondence with faces of the graph, each the complement of a
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O2
O3

Γ
•me

Figure 2: A cover supporting a good partition

small δ/2-neighborhood of the boundary of the face. For each edge e, let me denote its
midpoint. In a neighborhood of me, Nδ has natural local coordinates as (−δ, δ)× (−1, 1)
with the edge given by 0× (−1, 1), me = (0, 0) and lines {p} × (−1, 1) parallel to the edge.
We assume that δ is small enough so that we may choose these neighborhoods of midpoints
to be pairwise disjoint and let Ue denote the neighborhood containing me. Let O2 be the
union

⋃
e edge Ue. Finally, let X be the union of the sub-neighborhoods (−δ, δ)× [−1/2, 1/2]

and let O3 be the complement of X in Nδ. See figure 2 for a local picture.
We now construct the desired partition of unity, with λi supported on Oi. Define λ1

to be constant 1 on S \Nδ, constant 0 on Nδ/2, and piecewise linear in the intermediate
regions, with level sets consisting of polygons with edges parallel to the edges of Γ.

Let g = 1 − λ1, this is a function supported on O2 ∪ O3. Define λ2 to agree with g
on the complement of

⋃
e∈E Ue. In coordinates Ue = (−δ, δ) × (−1, 1) as given above,

define the restriction of λ2 to Ue to agree with g on (−δ, δ)× (−1/2, 1/2), to be given by
λ2(x, y) = 2(1− |y|)g(x, y) on (−δ, δ)× (−1,−1/2) ∪ (−δ, δ)× (1/2, 1), and then extend
λ2 to be 0 elsewhere. This gives a continuous (in fact, piecewise linear) bump function
supported on O2. Finally, let λ3 = 1 − λ1 − λ2, which is supported on O3. It is easily
verified that this is a standard bump function, as in the example discussed after Definition
3.1.

To finish the proof of Theorem 1.2, let M be a Seifert fibered 3-manifold, and let S
be the base orbifold. Take a cover O = {O1, O2, O3} of S as given by Lemma 3.3. Using
the construction from Lemma 3.3 starting with a graph on M , we may arrange for each
exceptional fiber to be contained in only one set in O, and also to have each connected
component of each element of O contain at most one exceptional fiber. Let {λi} be the
partition of unity subordinate to this cover consisting of standard bump functions.

Fix a connected component B of some set Oi ∈ O, and let B × S1 be the union of
fibers over B. By construction this is a (p, q) standard fibered torus for some p, q. Fix
K ∈ Z. Lemma 3.2 constructs homeomorphisms aB, bB ∈ Homeo0(M3) supported on
B × S1 such that [aB, bB] rotates each (nonexcptional) fiber over {x} × S1 by 2πKλi(x).
There is a natural path aB(t) from the identity in Homeo0(M) to aB(1) = aB by applying
the construction of Lemma 3.2 to give rotations of a (non-exceptional) fiber through x by
2πqtKλi(x) at time t.

Then [aB(t), bB] gives a path from identity to [aB, bB] that rotates (non-exceptional)
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fibers by 2πqtKλ(x) at time t. Moreover, if bB(t) is any path from bB to the identity
supported on B, then [aB(t), bB] is homotopic rel endpoints to [aB(t), bB(t)]. Let

ai =
∏
B

aB, and ai(t) =
∏
B

aB(t)

where the product is taken over all connected components of Oi. Similarly, let

bi =
∏
B

bB, and bi(t) =
∏
B

bB(t).

Let G̃ be the covering group of G = Homeo0(M) as given at the beginning of this
section; i.e. the central extension 0→ Z→ G̃→ G→ 1. One definition of this covering
group is as the set of equivalence classes of paths based at the identity in G, where two
paths are equivalent if they have the same endpoint and their union is an element of π1(G)
that belongs to the subgroup π1(G)/ι(Z). The group operation is pointwise multiplication,
or equivalently, concatenation. In this interpretation, the inclusion of n ∈ Z into G̃ is given
by a path gt in G, t ∈ [0, 1] that rotates (nonexceptional) fibers by an angle of 2πnt at
time t.

Now we return to the machinery of Section 2. Consider the map of a genus 3 surface
group into G where the images of the standard generators are ai and bi as defined above.
The paths ai(t) and bi(t) give lifts of ai and bi to G̃, with commutator [ai(t), bi(t)] a path
from the identity to a map that rotates fibers by 2πKλi(x). Hence,

∏3
i=1[ai(t), bi(t)]

represents K ∈ Z. Thus, if ρ is the associated map of the surface group, and e the Euler
class in H2(G,Z), this means that 〈ρ∗(Σ), e〉 = K. Since K can be chosen arbitrarily, this
proves Theorem 1.2.

Remark 3.4. The constructions above can likely be realized in the smooth category (i.e.
with a homomorphism π1(Σ3)→ Diff0(M)), however, more care would be needed in the
construction of the bump functions, as not all convex, smooth bump functions on a disc
are smoothly conjugate.

4 Measure preserving case

We introduce some preliminary definitions. Let M be a Seifert fibered 3-manifold, and let
ν denote the signed length measure on fibers, where regular fibers are normalized to have
length one. Locally, in a standard (p, q) fibered torus D2 × S1, where S1 has unit length,
ν is 1

qdθ. Define the fiber length of a rectifiable curve γ : [0, 1]→M by `(γ) =
∫
γ dν. Note

that this definition is independent of the homotopy class of γ rel endpoints. Thus, we can
extend this definition to continuous curves by defining `(γ) to be the length of a smooth
approximation of γ that is homotopic to γ rel endpoints.

Let µ be a probability measure on M . For a path ft in Homeo0(M) from f0 = id to
f1 = f , and point x ∈M ; ft(x) defines a continuous path in M . Thus, we may define the
average fiber rotation with respect to µ by

Rµ(ft) :=

∫
M
`(ft(x))dµ.

9



For future reference, we note some easy properties of Rµ.

Proposition 4.1 (properties of Rµ). 1. Rµ is well defined on elements of the universal
covering group of Homeo0(M).

2. Rµ is a homomorphism when restricted to the subgroup of the universal covering
group consisting of paths to µ-preserving homeomorphisms.

3. Identifying S̃O(2) ∼= R with the subgroup of fiber rotations in the universal covering
group of Homeo0(M). (so that s ∈ R is a path through rotations from identity to
rotation by 2πs), we have Rµ(s) = s.

Proof. The first assertion follows from the remark that length depends only on on homotopy
classes rel endpoints. To show the second, suppose that ft is a path such that f1 preserves
µ. Then for a concatenation of paths gtft we have

Rµ(gtft) :=

∫
M
`(gt ◦ f1(x))dµ+

∫
M
`(ft(x))dµ = R(ft) +R(gt).

which implies the assertion above. The third assertion is immediate from the definition.

Proving Theorem 1.3 and Corollary 1.4 Applying this to our situation, let M
be a Seifert fibered 3-manifold, let G = Homeo0(M) and let G̃ be the covering group
corresponding to π1(G)/ι(Z) as in the proof of Theorem 1.2. Recall that this is not
necessarily the universal covering group of G, despite our notation G̃. Let µ be a probability
measure on M and let Gµ denote the group of measure preserving homeomorphisms. Let
e ∈ H2(Gδ;Z) be a class with nonzero image in H2(SO(2);R). By the framework given in
Section 2, in order to show that the pullback of e to H2(Gδµ;Z) is zero, it suffices to show
that ρ∗(e) = 0 for any orientable surface Σ and ρ : π1(Σ)→ Gµ.

Let π1(Σ) = 〈a1, b1, ..., ag, bg :
∏g
i=1[ai, bi]〉 and suppose that ρ : π1(Σ) :→ G has image

in Gµ. Let ãi, and b̃i be paths in G from the identity to ai and bi respectively. Now we
have

Rµ(

g∏
i=1

[ãi, b̃i]) =

g∏
i=1

[Rµ(ãi), Rµ(b̃i)] = 0

since Rµ is a homomorphism by Proposition 4.1. Now consider the equivalence class of
this path

∏g
i=1[ãi, b̃i] as an element of G̃. Since it is a lift of the identity, the definition

of G̃ implies that
∏

[Rµ(ãi), Rµ(b̃i)] is equivalent to a path obtained by rotating fibers of
M by an integral amount, where n = ρ∗(e) ∈ Z. Since R(n) = n[F ] by Proposition 4.1, it
follows that n = 0, as claimed.

To prove Corollary 1.4 it suffices to observe that π1(T 2) is amenable, so any action
on a compact manifold M has an invariant probability measure. Thus, any ρ : π1(T 2)→
Homeo0(M) factors through ρ : π1(T 2)→ Homeoµ(M)→ Homeo0(M) for some probability
measure µ, hence ρ∗(e) = 0.
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