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we will have to include some axiom that guarantees the existence of the inter-
section points of circles with other circles, or with lines, at least those that arise
in the ruler and compass constructions of Euclid's Elements. Some modern
axiom systems (such as Birkhoff (1932) or the School Mathematics Study Group
geometry) build the real numbers into the axioms with a postulate of line mea-
sure, or include Dedekind’'s axiom that essentially guarantees that we are work-
ing over the real numbers. In this book, however, we will reject such axioms as
not being in the spirit of classical geometry, and we will introduce only those
purely geometric axioms that are needed to lay a rigorous foundation for
Euclid's Elements.

The issue of intersecting circles arises again in (1.22), where Euclid wishes to
construct a triangle whose sides should be equal to three given line segments
a, b, c¢. This requires that a circle with radius a at one endpoint of the segment b
should meet a circle of radius ¢ at the other end of the segment b. Euclid correctly
puts the necessary and sufficient condition that this intersection should exist in
the statement of the proposition, namely that any two of the line segments
should be greater than the third. However, he never alludes to this hypothesis
in his proof, so that we do not see in what way this hypothesis implies the exis-
tence of the intersection point. While some commentators have criticized Euclid
for this, Simson ridicules them, saying “For who is so dull, though only begin-
ning to learn the Elements, as not to perceive ... that these circles must meet
one another because FD and GH are together greater than FG.” Still, Simson has
only discussed the position of the circles and has not addressed the second issue
of why the intersection point exists. (See Plate V, p. 109)

The Method of Superposition

Let us look at the proof of (I.4), the A

side-angle-side criterion for congru-

ence of two triangles (SAS for short).

Suppose that AB = DE, and AC = DF, -

and the included angle / BAC equals B <

/[ EDF. We wish to conclude that the tri- D

angles are congruent, that is to say, the

remaining sides and pairs of angles are

congruent to each other, respectively.

Euclid's method is to “apply the tri- =
angle” ABC to the triangle DEF. That €

is, he imagines moving the triangle ABC onto the triangle DEF, so that the point
A lands on the point D, and the side AB lands on the side DE. Then he goes on
to argue that the ray AC must land on the ray DF, because the angles are
equal, and hence C must land on F because the sides are equal. From here he
concludes that the triangles coincide entirely, hence are congruent.
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This is another situation where Euclid is using a method that is not explicitly
allowed by his axioms. Nothing in the Postulates or Common Notions says that
we may pick up a figure and move it to another position. We call this the method
of superposition.

Euclid uses this method again in the proof of (1.8), but it appears that he was
reluctant to use it more widely, because it does not appear elsewhere. If it were
a generally accepted method, for example, then Postulate 4, that all right angles
are equal to each other, would be unnecessary, because that would follow easily
from superposition.

If we think about the implications of this method, it has far-reaching con-
sequences. It implies that one can move figures from one part of the plane to
another without changing their sides or angles. Thus it implies a certain homo-
geneity of the geometry: The local behavior of figures in one part of the plane
is the same as in another part of the plane. If you think of modern theories of
cosmology, where the curvature of space changes depending on the presence of
large gravitational masses, this is a nontrivial assumption about our geometry.

To state more precisely what assumptions the method of superposition is
based on, let us define a rigid motion of the plane to be a one-to-one transforma-
tion of the points of the plane to itself that preserves straight lines and such that
segments and angles are carried into congruent segments and angles. To carry
out the method of superposition, we need to assume that there exist sufficiently
many rigid motions of our plane that

(a) we can take any point to any other point,

(b) we can rotate around any given point, so that one ray at that point is taken
to any other ray at that point, and

(c) we can reflect in any line so as to interchange points on opposite sides of the
line.

If we were working in the real Cartesian plane IR* with coordinates x, y, we
could easily show the existence of sufficient rigid motions by using translations,
rotations, and reflections defined by suitable formulas in the coordinates.

For example, a translation taking the
point (0, 0) to (a, b) is given by

7
{ X =x+a,
Yy=y+bh,
and a rotation of angle « around the " (a,b)

origin is given by

x'=xcosu — ysinu,
y' = xsino+ ycoso.
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Thus we can easily justify the use of the method of superposition in the real
Cartesian plane. However, since there are no coordinates and no real numbers
in Euclid's geometry, we must regard his use of the method of superposition as
an additional unstated postulate or axiom.

To formalize this, we could postulate the existence of a group of rigid motions
acting on the plane and satisfying the conditions (a), (b), (¢) mentioned above.
Indeed, there is an extensive modern school of thought, exemplified by Felix
Klein's Erlanger Programm in the late nineteenth century, which bases the study
of geometry on the groups of transformations that are allowed to act on the
geometry. This point of view has had wide-ranging applications in differential
geometry and in the theory of relativity, for example.

We will discuss the rigid motions in Euclidean geometry in greater detail
later (Section 17). For the moment let us just note that the proof of the (SAS)
criterion for congruence in (1.4) requires something more than what is in Euclid’s
axiom system. Hilbert's axioms for geometry actually take (SAS) as an axiom in
itself. This seems more in keeping with the elementary nature of Euclid’'s geome-
try than postulating the existence of a large group of rigid motions.

Finally let us note that Euclid’s use of the method of superposition in the
proof of (1.4) gives us some more insight into his concepts of “equality” for line
segments and angles. In Common Notion 4 he says that things that coincide
with one another are equal (congruent) to one another. In the proof of (1.4) he
also uses the converse, namely, if things (line segments or angles) are equal to
one another (congruent), then they will coincide when one is moved so as to be
superimposed on the other. So it appears that Euclid thought of line segments or
angles being congruent if and only if they could be moved in position so as to
coincide with each other.

Betweenness

Questions of betweenness, when one point is between two others on a line, or
when a line through a point lies inside an angle at that point, play an important,
if unarticulated, role in Euclid's Elements. To explain the notion of points on a
line lying between each other, one could simply postulate the existence of a
linear ordering of the points. Similarly, for angles at a point one could talk of
a circular ordering.

But when a hypothesis of relative position of points and lines in one part of a
diagram implies a relationship for other parts of the figure far away, it seems
clear that something important is happening, and it may be dangerous to rely on
intuition.

For example, how do you know that the angle bisector at a vertex A of a tri-
angle ABC meets the opposite side BC between the points BC and not outside?
Of course, it is obvious from the picture, but what if you had to explain why
without drawing a picture?



