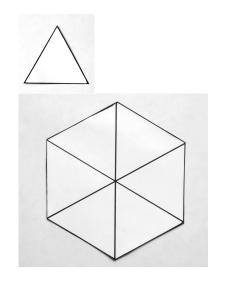
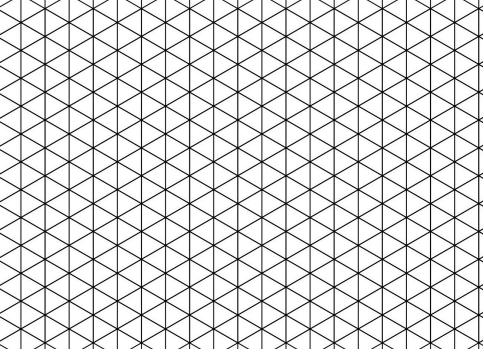
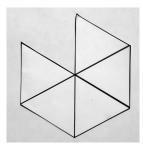
What is geometry? a walk through mathematical spaces


Kathryn Mann UC Berkeley

Sonoma State M*A*T*H Colloquium September 2015


What do modern geometers study?
What spaces appear in mathematics?
How do we find them?

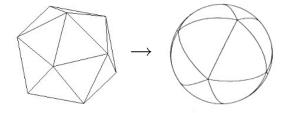

1. Curiosity

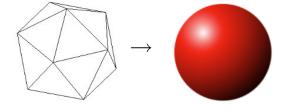
Playing with paper

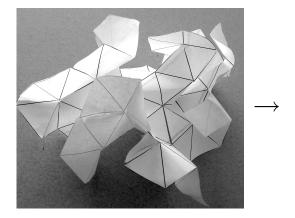
6 around a vertex

5 around a vertex?




icosahedron

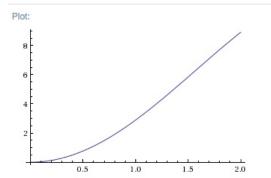

7 around a vertex (?!)



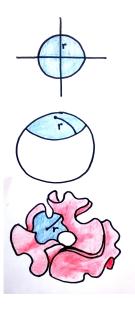
hyperbolic plane

Let's explore do geometry

Area of disc of radius r

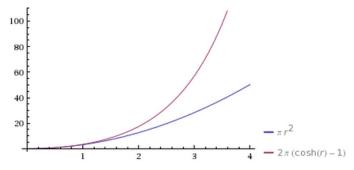


Plane: πr^2 quadratic

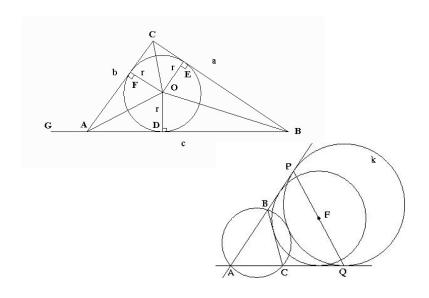

Sphere: $2\pi(1-\cos(r)) \simeq linear$

.

Area of disc of radius r


Plane: πr^2 quadratic

Sphere: $2\pi(1-\cos(r)) \simeq \text{linear}$


Hyperbolic space: $2\pi(\cosh(r) - 1) \simeq e^r$ exponential

"there's lot's of space in hyperbolic space"

Plot:

Next goal: high school geometry

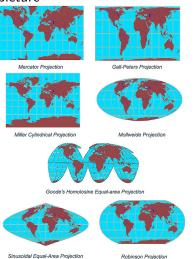
Straight lines in curved spaces

Definition

A *geodesic* is a "shortest path" between two points.

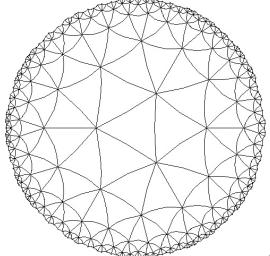
Geodesics play the role of straight lines.

Plane – straight lines

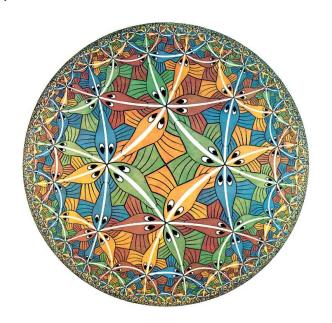

Sphere – segments of great circles

Hyperbolic space – ??

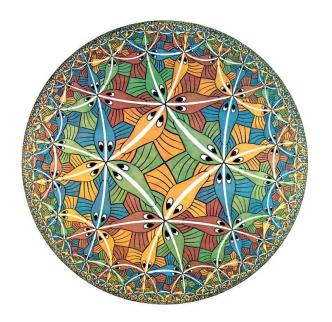
A better picture


We have many ways of representing the (spherical) earth as a flat picture

all of them are distorted


A better picture

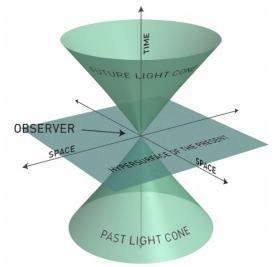
The Poincaré disc model does the same for hyperbolic space.


(7 triangles around a vertex)

Familiar?

Geodesics

Trigonometry and more...



sine law in hyperbolic space: $sin(a) = \frac{sinh(opposite)}{sinh(hypotenuse)}$

trigonometry, $% \left(1\right) =0$ and $\left(1\right) =0$ a

2. Discovery

The (Minkowski-Einstein) space-time universe

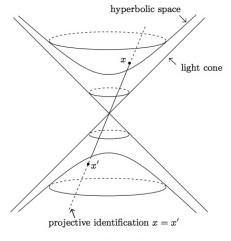
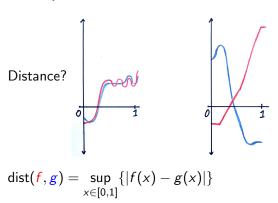


Figure 1. Minkowski space.

3. Abstraction


Geometry today

```
{\it Metric\ space} = {\it collection\ of\ objects} \ + {\it notion\ of\ "distance"\ between\ them}
```

Geometry today

 $\label{eq:metric space} \begin{aligned} \textit{Metric space} &= \text{any collection of objects} \\ &+ \text{ notion of "distance" between them} \end{aligned}$

Example 1: Objects = all continuous functions $[0,1] \to \mathbb{R}$

Geometry today

Metric space = any collection of objects + notion of "distance" between them

Example 1: Objects = all continuous functions $[0,1] \rightarrow \mathbb{R}$

Direct application: Solution of ODE's

$$y'(t) = F(y(t)), y(0) = a$$

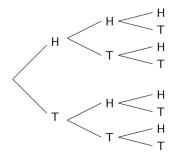
Picard's theorem: iterative process to get closer and closer to solution y(t).

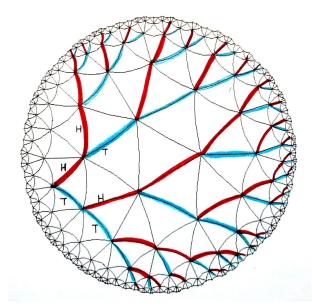
Works for functions to \mathbb{R}^n too!

Example 2:

Objects = $n \times n$ matrices

Distance:
$$d(A, B) = \max ||a_{ij} - b_{ij}||$$

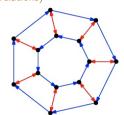

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ close to } \begin{pmatrix} 1.2 & 0 & 0.03 \\ 0 & 1 & 0.1 \\ 0 & 0.05 & 0.99 \end{pmatrix}$$

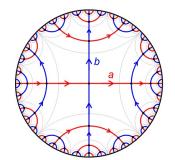

Remark: Not the only nice way to make a distance!

Riemannian geometry provides a framework to define metrics that "remember" matrix multiplication:

$$d(A, B) = d(CA, CB)$$

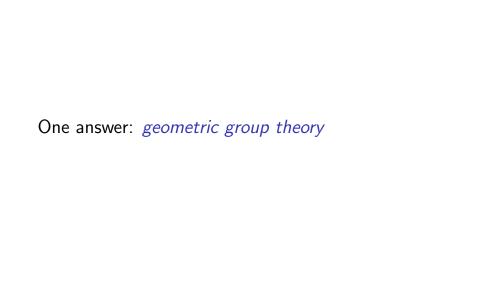
Example 3: space of all outcomes

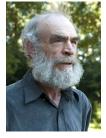




Advanced Example: Objects = Elements of a group

(with specified generators, relations)


$$D_{14}$$
 $\langle r, s \mid s^2 = 1, d^7 = 1, rs = sr^1 \rangle$ space/distances depicted by graph


 $F_2 \langle a, b \rangle$

4. So what's my research?

Geometric group theory

The study of algebraic objects as geometric objects 'groups'

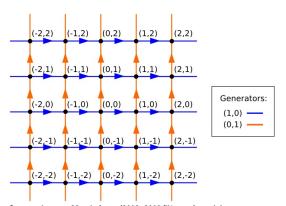
1987 paper "Hyperbolic groups"

M. Gromov

Philosophy/perspective has now been used in:

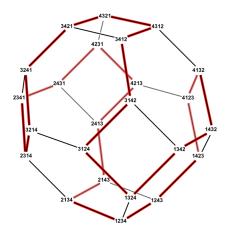
low-dimensional topology, manifold theory, algebraic topology, complex dynamics, combinatorial group theory, algebra, logic, classical families of groups, Riemannian geometry, representation theory... ...and my work too!

References and further reading

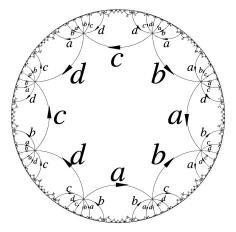

- [1] D. Henderson, S. Taimioa, *Crocheting the Hyperbolic Plane*. Mathematical Intelligencer, Vol. 23, No 2 (2001) 17–28
- [2] J. Cannon, W. Floyd, R. Kenyon, W. R. Parry, Hyperbolic Geometry. in Flavors of Geometry, MSRI Publications Volume 31, 1997 29–115
- W. Thurston, *Three-Dimensional Geometry and Topology*. Princeton university press, 1997.
 (a wonderful introduction to hyperbolic geometry and much more)
- [4] J. Weeks, *The shape of space*. CRC Press, 2001. (also highly recommended and a little easier than Thurston)
- [5] Videos:

```
"The shape of space" inspired this video:
http://www.geom.uiuc.edu/video/sos/
More hyperbolic geometry in "not knot"
http://www.geom.uiuc.edu/video/NotKnot/
```

"Dimensions" a newer series of videos with a geometric perspective: $\verb|http://www.dimensions-math.org/|$


[6] JUST FOR FUN: "Do-It-Yourself Hyperbolic Geometry" class notes on my webpage: https://math.berkeley.edu/~kpmann/DIYhyp.pdf

The group $\mathbb{Z}\times\mathbb{Z}$


from math.cornell.edu/~mec/2008-2009/Victor/part4.htm

The symmetric group S^4 (generated by transpositions)

wikimedia commons

The group $\langle a,b,c,d,|aba^{-1}b^{-1}=c^{-1}d^{-1}cd\rangle$

 $from \ yann-ollivier.org/maths/primer.php$

A group that looks like 3-dimensional hyperbolic space (!)

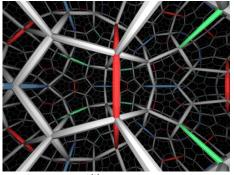


image from the cover of [?]

Thanks!

and please come play with my hyperbolic spaces