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Abstract

Let G be a group acting on R2 by orientation-preserving homeomorphisms. We
show that a tight bound on orbits implies a global fixed point. Precisely, if for some
k > 0 there is a ball of radius r > 1√

3
k such that each point x in the ball satisfies

‖g(x) − h(x)‖ ≤ k for all g, h ∈ G, and the action of G satisfies a nonwandering
hypothesis, then the action has a global fixed point. In particular any group of
measure-preserving, orientation-preserving homeomorphisms of R2 with uniformly
bounded orbits has a global fixed point. The constant 1√

3
k is sharp.

As an application, we also show that a group acting on R2 by diffeomorphisms
with orbits bounded as above is left orderable.

AMS Classification: 37E30, 57M60
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1 Introduction

The Brouwer plane translation theorem states that any orientation-preserving homeo-
morphism of the plane with a bounded orbit must have a fixed point. We would like
to extend this kind of fixed-point theorem to groups other than Z acting on the plane,
finding some minimal restrictions on a group of homeomorphisms of R2 which guarantee
a global fixed point – a point x ∈ R2 such that gx = x for all g ∈ G.

Several papers address the question of global fixed points for abelian groups. Of
note is recent work of Franks, Handel, and Parwani [5]. They prove, using very different
methods from those we employ in this paper, that any finitely generated abelian group
of orientation-preserving C1 diffeomorphisms of R2 leaving invariant a compact set has
a global fixed point.

Franks and others have also studied the fixed points sets of Z-actions by measure-
preserving homeomorphisms. Much of this work focuses on measure-preserving home-
omorphisms of surfaces, but since the universal cover of any closed, oriented surface
of genus g ≥ 1 is the plane, it is intimately related with the study of fixed points of
homeomorphisms of the plane. Theorem 1.1 here could be viewed as a first step towards
generalizing these results to groups other than Z.

Our main theorem concerns the existence of global fixed points of an arbitrary group
G acting on the plane by orientation-preserving homeomorphisms, without making
assumptions on the algebraic structure of G. Of course, some restriction on the group
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action is necessary to ensure a global fixed point, for we must exclude group elements
acting (for example) by translations. To rule out such examples, we require that the
group have uniformly bounded orbits on a bounded set of sufficient size. We also require
a nonwandering hypothesis to eliminate more pathological counterexamples. What is
surprising is that these two conditions suffice:

Theorem 1.1. Let G be any group acting on R2 by orientation-preserving homeomor-
phisms. Suppose that there exists a constant k and a ball B ⊂ R2 of radius r > 1√

3
k

such that for all g, h ∈ G and x ∈ B we have ‖gx − hx‖ ≤ k. Suppose additionally
that no point in the wandering set for any g ∈ G is contained in B or any bounded
component of R2 \GB. Then G has a global fixed point.

The wandering set for a homeomorphism g is the set of points x ∈ R2 such that
there is some open set V containing x with all translates gn(V ) disjoint from V . The
condition that no point in the wandering set for g has forward orbit contained in B
or a bounded component of R2 \GB is true in particular if G is a group of measure
preserving transformations (for any locally finite measure with full support), or if G
has uniformly bounded contraction on B, meaning that there is some ε > 0 so that
‖gx− gy‖ > ε‖x− y‖ for any x, y ∈ B and g ∈ G.

The constant 1√
3
k in the statement of Theorem 1.1 is sharp. To show this, in

section 3 we construct a finitely generated group acting on R2 by measure-preserving
homeomorphisms (hence satisfying the hypothesis on the wandering set) with every
orbit bounded by k on a ball of radius r = 1√

3
k, but no global fixed point. We also

discuss in more detail the hypothesis on the wandering set and give a counterexample
when this condition is not satisfied.

The paper concludes with an application of our proof technique to left invariant
orders. We prove

Corollary 1.2. Let G be a group acting on R2 by C1 diffeomorphisms, and satisfying
the property that there is some constant k and a ball B ⊂ R2 of radius r > 1√

3
k such

that ‖g(x)− h(x)‖ ≤ k for any g, h ∈ G and x ∈ B. Then G is left orderable.

The definition of left orderable is given in Section 4 along with some discussion of
left orderability. The constant 1√

3
k is again sharp.

2 Proof of Theorem 1.1

The use of prime ends in the second part of this proof is inspired by Calegari’s work on
circular orders on subgroups of Homeo+(R2) in [3].

Let B be an open ball in R2 of radius r > 1√
3
k, satisfying the hypotheses of the

theorem. Assume without loss of generality that B is centered at the origin. Its orbit
GB :=

⋃
g∈G

gB, is a G-invariant set. We will study the action of G on the boundary of

GB and find a fixed point there. First, note that our hypothesis that ‖gx− hx‖ < k for
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each x ∈ B and g, h ∈ G implies that GB is connected. In fact, the following stronger
statement is true:

Lemma 2.1. Let G be any group acting on R2 by orientation-preserving homeomor-
phisms. Suppose that there is a closed ball B of radius r such that for all x ∈ B, the
orbit Gx has diameter strictly less than 2r. Then GB is a connected set, in fact it is
path-connected.

Proof. Assume without loss of generality that B is centered at the origin. We show
that gB ∩B 6= ∅ for any g ∈ G. To see this, assume for contradiction that gB ∩B = ∅
and consider the map φ : S1 → S1 given by φ(x) = g(rx)

‖g(rx)‖ . This is well defined since
0 ∈ B so g(rx) 6= 0 for any point rx ∈ ∂B. Since the orbit of each point in ∂B has
diameter strictly less than 2r and gB ∩B = ∅, it follows that φ(x) 6= −x for all x ∈ S1.
This means that φ has degree 1; indeed,

Φ(x, t) =
tφ(x) + (1− t)x
‖tφ(x) + (1− t)x‖

is a homotopy between φ and the identity map. However, our assumption that gB∩B = ∅
implies that φ must have degree zero.

Thus, GB is a connected, G-invariant set containing B and with compact closure.
Moreover, since each point inGB is in the orbit of some point ofB, we have ‖gx−hx‖ ≤ k
for all x ∈ GB and g, h ∈ G. The same inequality holds for each point x in the boundary
∂(GB), since for each g and h ∈ G, the set {x ∈ R2 : ‖gx − hx‖ ≤ k is closed. We
may further assume that GB is simply connected, for its complement contains only one
unbounded component, and so the union of GB with all bounded components of its
complement is a connected, simply-connected, G-invariant set containing B. Since the
boundary of this simply connected region is a subset of the original boundary, each
point x in the new boundary also satisfies ‖gx − hx‖ ≤ k for all g, h ∈ G. We now
examine the action of G on ∂(GB).

Assume first that ∂(GB) is homeomorphic to a circle. Since G preserves GB, it
preserves ∂(GB), and acts on ∂(GB) by orientation-preserving homeomorphisms of
this circle. We will find a fixed point on ∂(GB) for this action. Let x be any point
in ∂(GB). Since the orbit of x lies in the complement of B, a ball of radius r > k√

3
,

and the maximal distance between any two points in the orbit is k, the orbit lies
entirely in a sector of angle 2π

3 from the origin. By this, we mean a set of the form
{eiθ : α < θ < α + 2π

3 } for some real number α. Without loss of generality, we may
assume the orbit lies in the sector S ..= {eiθ : −π3 < θ < π

3 }.
The complement of the closure of the orbit in the circle, ∂(GB) \Gx, consists of

a union of disjoint open intervals which are permuted by G. Say that an interval I is
spanning if it is possible to join the endpoints of I with a path in S \ B so that the
resulting loop is homotopic to ∂B in R2 \ B. See Figure 1a for an illustration. More
generally, we say that any set X ⊂ (R2 \B) is spanning if there is some path γ in S \B
such that γ ∪X is homotopic to ∂B in R2 \B.

3



B

GB

I

S

x

(a) I ⊂ (∂(GB) \ Ḡx) is a spanning interval.
Dots indicate points in the orbit of x
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(b) If there are multiple spanning intervals,
we have a spanning arc A ⊂ int(GB) “exte-
rior” to some spanning interval I ⊂ ∂(GB)

Figure 1: Spanning intervals

We claim that there is only one spanning interval in ∂(GB)\Gx. Since GB contains
B, there must be at least one. If there is more than one, then let I denote a spanning
interval such that the unbounded component of R2 \ (S ∪ I) contains another spanning
interval. In particular, this implies that there is an arc A of points in the interior of
GB contained in the unbounded component of R2 \ (S ∪ I) that is also a spanning arc.
Let x0 = A ∩ {aei

−π
3 : a ∈ R} and x1 = A ∩ {aei

π
3 : a ∈ R} be the endpoints of this arc.

See Figure 1b. For some elements g0, g1 ∈ G, we have xi ∈ giB. By the proof of Lemma
2.1, B ∪ giB is path connected, so there is a path γi from xi to the origin in B ∪ giB.
Since GB is simply connected, one of these paths γi must have γi ∩ B as a spanning
set: otherwise A ∪ γ0 ∪ γ1 is the boundary of a disc containing I, so is not contractible
in GB.

Thus, for either i = 1 or i = 2, we have a spanning arc γi∩ (R2 \S) in the unbounded
component of R2 \ (S ∪ I) contained entirely in giB ∪B. Considering now the boundary
of giB, this implies that ∂(giB) ∩ (R2 \ (S ∪ B)) contains two disjoint spanning arcs
(Figure ??). However, the restriction ‖gix− x‖ ≤ k for all x ∈ ∂B implies that ∂(giB)
has only a single spanning arc: an easy calculation using the restriction shows that
any subarc of giB contained in R2 \ (S ∪B) that spans must contain the image of the
point (−r, 0) ∈ ∂B under the homeomorphism gi. This gives the desired contradiction,
proving our claim that there is only one spanning interval in ∂(GB) \Gx

Abusing notation slightly, let I denote the spanning interval of ∂(GB) \ Gx. We
now employ the orbit bound condition once more to show that each element of G fixes I.
Assume for contradiction that for some g we have gI ∩I = ∅. By uniqueness of spanning
intervals, gI is not spanning. Using the fact that I is spanning, connect the endpoints
of I with a path in S \ B to form a loop L homotopic in R2 \ B to the boundary of
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Figure 2: The boundary of giB has two spanning arcs, violating ‖gix− x‖ ≤ k on ∂B

B. Since gI is not spanning, we may then connect its endpoints by a path in S \B to
form a loop L′ nullhomotopic in R2 \B. We can also easily choose these paths to avoid
the origin. Extend the homeomorphism g : I → gI arbitrarily on these paths, giving
a homeomorphism f : L → L′. By construction, no point is mapped under f to an
antipodal point – a point aeiθ ∈ L ⊂ R2 cannot have f(a) = be−iθ for any real number
b. This is true because of the orbit bound on points in I mapping under g, and holds
on L since f(L) = L′ is also contained in S. See figure 3.

Now a degree argument similar to the proof of Lemma 2.1 shows that f(L) = L′

cannot be nullhomotopic in R2 \B, giving a contradiction. In detail, if π : R2 \ 0→ ∂B
is radial projection aeiθ 7→ reiθ then

Φ(x, t) =
r[(tf(x) + (1− t)(x)]
‖tf(x) + (1− t)(x)‖

is a homotopy between the radial projection map π : R2 \ 0→ ∂B π : aeiθ 7→ reiθ, and
the map π ◦ f : L → ∂B. (Here, we use that L and L′ avoid zero, and that no point
maps under f to an antipodal point). However, no such homotopy exists if the loops L′

is nullhomotopic in R2 \B. It follows that I is a G-invariant interval, and the endpoints
of I (or endpoint, if I = ∂(GB) \ {x}) are global fixed points for G. This proves the
theorem when ∂(GB) is homeomorphic to a circle.

I

gI

0

Figure 3: Intervals I and gI closed into loops
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In the case where ∂(GB) is not homeomorphic to a circle, we can modify the
argument above using the theory of prime ends. Prime ends are a tool from conformal
analysis developed to study the boundary behavior of conformal maps defined on open
regions in the complex plane. Here we will use them to turn the action of G on ∂(GB)
into an action on the circle. There are several equivalent definitions of prime ends; we
follow Pommerenke. The reader may refer to [8] or [7] for more details.

For an open set U in R2, define a crosscut in U to be an open Jordan arc C such
that C \ C consists of one or two points on the boundary of U . Define a null chain in
U to be a sequence of crosscuts Ci satisfying

1. Ci ∩ Ci+1 = ∅

2. Ci separates C0 from Ci+1 in U

3. The diameter of Ci converges to 0 as i goes to infinity.

A prime end of U is an equivalence class of null chains, where {Ci} is equivalent to
{C ′i} if for all m sufficiently large there is a n such that Cm separates C ′0 from C ′n, and
C ′m separates C0 from Cn. We let P(U) denote the set of all prime ends of U . We
need only concern ourselves with the case where U is simply connected and has simply
connected, compact closure and can also assume that the boundary of U is equal to the
frontier U \ U , although in general one needs to work with the frontier rather than the
usual boundary.

If ∂U is locally connected, the prime ends of U correspond exactly to proper
homotopy classes (fixing the boundary) of rays in U . In particular, for the unit disc
D we have P(D) = S1. When ∂U is not locally connected prime ends are not so well
behaved. To each prime end e ∈ P(U) we can associate a subset of ∂U called the
principal points of e. A principal point for e is an accumulation point of

⋃
Ci for some

chain {Ci} representing e. It is not hard to show that the set of principal points of any
prime end is nonempty and connected. It is also known that the set of points in ∂U
which are the sole principal point of some prime end is a dense set in ∂U . But it is
possible for a single prime end to have a continuum of principal points, and for infinitely
many distinct prime ends to share the same set of principal points. So principal points
do not define a one-to-one correspondence of prime ends with points on the boundary.

However, there is a (non-canonical) one-to-one correspondence between prime ends
of U and points of S1. This correspondence is obtained by choosing a conformal map
f : U → D, which exists by the Riemann mapping theorem. The map f induces a
map f̂ on prime ends, since for any null chain {Ci} representing a prime end of U
the sequence {f(Ci)} is a null chain in D, so represents a prime end of D. It is a
theorem of Carathéodory that this map is a bijection P(U)→ S1 [4]. Moreover, there
is a natural topology on P(U) that makes f̂ a homeomorphism and an extension of
the homeomorphism f : U → D. A basis for this topology consists of sets of the
form V̂ := {[{Ci}] : Cn ⊂ V for n sufficiently large}, where V is an open set in U . In
particular, when U = D this topology on P(D) agrees with the usual topology on S1.

Now to apply this theory to our situation. Let U = GB, which we may again assume
to be simply connected. Replacing GB with int(GB) if necessary, we can also assume
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that ∂U = U \ U ; for U and ∂U will still be G-invariant sets. Fix a conformal map
f : U → D. Since G acts by orientation-preserving homeomorphisms on U , the induced
action f̂Gf̂−1 on S1 is by orientation-preserving homeomorphisms as well. As in the
previous part of the proof, we will find an invariant interval and therefore a fixed point
for the action on S1. The idea is to the condition ‖gx− hx‖ ≤ k on principal points of
prime ends in R2 to reproduce the argument in the simple case above.

Let e be a prime end of U with a single principal point x ∈ ∂U . As in the case
where ∂(GB) is homeomorphic to a circle, we may assume that the orbit of x lies in
the sector S = {eiθ : −π3 < θ < π

3 }.
The complement of the closure of the orbit of e in the circle of prime ends consists of

a union of open intervals in which are permuted by G. We modify our original definition
of “spanning” to the following: For any interval I of prime ends, let pr(I) ⊂ R2 denote
the union of all principal points of prime ends in I. Then I is said to be spanning if
there is some path γ in S \B such that pr(I) ∪ γ is homotopic to ∂B in R2 \B. The
argument that there is a unique spanning interval and that this interval must be fixed
by the action of G can now be carried through just as in the case where ∂(GB) is
homeomorphic to a circle. One simply works with the sets pr(I) in the plane instead of
the intervals themselves. In the final step, one needs to replace pr(I) with (for instance)
a projection onto a nearby jordan curve (and pr(gI) as well) in order to close these
into loops L and L′. But this is easily done, and the rest of the proof applies nearly
verbatim.

Thus there is some G-invariant interval for the action f̂Gf̂−1 on P(U) = S1. Since
f̂Gf̂−1 acts by orientation-preserving homeomorphisms on S1, the endpoint(s) of this
interval must be fixed by G. However, a fixed prime end does not ensure a fixed point
for the action of G on R2: a counterexample is given in Example 3.2 below. In order
to find a fixed point for the action of G on the plane we must use the nonwandering
hypothesis.

Let e be a prime end fixed by G and let {Ci} be a null chain representing e, and
let p be a principal point of e. Then for any g in G, {g(Ci)} defines an equivalent null
chain. Following an argument in [6], we will show that g(Ci) ∩ Ci 6= ∅. This together
with the fact that the diameters of the Ci and g(Ci) tend to zero shows that any limit
point of

⋃
Ci, and in particular p, is a point fixed by g. To see that g(Ci) ∩ Ci 6= ∅,

note that each crosscut Ci divides U into two components, and let Ui be the component
that contains Cn for n > i. If Ci ∩ g(Ci) = ∅, the equivalence of the null chains {(Ci)}
and {g(Ci)} implies that g(Ui) ⊂ Ui or Ui ⊂ g(Ui). In the first case, there is an open
set V ⊂ Ui \ gUi, and so the images gn(V ) are all disjoint from V and contained in Ui,
contradicting our hypothesis that no wandering point for g had forward orbit in U . If
instead Ui ⊂ g(Ui), the sets g−n(V ) are disjoint from V , which is again a contradiction.
Since g was arbitrary, p is a global fixed point for the action of G on R2.

�
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3 Sharpness of the hypotheses

In this section we show that the constant 1√
3
k in the statement of Theorem 1.1 is sharp

and that a hypothesis on the wandering set is necessary.
To demonstrate sharpness of the constant, here is an example of an action on R2 by a

finitely generated group of measure-preserving, orientation-preserving homeomorphisms
with all orbits on a ball of diameter 1√

3
k bounded by k but no global fixed point. Since

the action preserves the standard Lebesgue measure on R2, it satisfies the nonwandering
hypothesis in the theorem.

Example 3.1. Let G ⊂ Homeo+(R2) be generated by a and b, where a is a rotation
by 2π/3 about the origin, and b is any orientation-preserving, measure-preserving
homeomorphism that does not fix the origin, but fixes each point in the complement of
some small disc of radius ρ centered at the origin. Since the only point fixed by a is
0, but 0 is not fixed by b, there is no global fixed point. However, every point in R2

has a bounded G-orbit, for the disc of radius ρ is G-invariant and each point in the
complement of the disc has a three point orbit. Moreover, on any ball B centered at
0 and of radius 1√

3
k with 1√

3
k > ρ, each point x in B satisfies ‖gx − hx‖ ≤ k for all

g, h ∈ G.

It remains to discuss the hypothesis on the wandering set of G. Note first that the
proof of Theorem 1.1 still goes through if rather than assuming that no point in the
wandering set for g is contained in B or any bounded component of R2 \GB, we require
only that for each g ∈ G, there is a neighborhood of ∂U in U that does not contain the
forward orbit of any wandering point for g. In the case where G is finitely generated,
we need only require this of the generators.

This assumption is necessary. There are examples of homeomorphisms of R2 that
leave invariant a bounded domain U and fix a prime end of U but do not fix any point
on the boundary of U . One such example is given by Barge–Gillette in [1]. Their
key construction is a region which spirals infinitely many times around a circle. A
homeomorphism that rotates the circle and shifts points along the spiraling arm will fix
the prime end corresponding to the spiraling arm, but not fix any point on the boundary
of the arm (Figure 4).

Figure 4: A homeomorphism of a region spiraling infinitely many times around a circle
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Using this as a building block, we will construct a group of orientation-preserving
homeomorphisms of R2 generated by two elements such that for all points x in a ball of
radius r > 1√

3
k we have ‖gx− hx‖ ≤ k, but violating the nonwandering hypothesis and

with no global fixed point.

Figure 5: The action of a on a region in R2

Example 3.2. Consider a group G generated by two homeomorphisms, a and b. The
homeomorphism a acts on the region shown in Figure 3 by rotating each circle a fixed
amount in the direction indicated, and shifting other points along the flow lines, which
spiral infinitely many times around each circle. The action of a on the complement of
the region can be arbitrary. Now let b be any homeomorphism which does not fix any of
the (isolated) fixed points of a and acts as the identity outside of a small neighborhood
of each fixed point of a. The region shown in figure 3 is then a G-invariant set. Let
k be such that the diameter of the largest ball contained in the region is 1√

3
k + ε for

some ε > 0. By making the circles rotated by a sufficiently small, we can ensure that
the diameter of the orbit of any point in the ball is bounded by k. However, there is no
global fixed point for the action.

4 Actions by diffeomorphisms and left-invariant orders

As an application of the proof of Theorem 1.1, we show in this section that a group
acting on the plane by orientation-preserving diffeomorphisms with orbits bounded as
in the statement of Theorem 1.1 is left orderable. The nonwandering hypothesis is not
necessary here. This result (Corollary 1.2, restated below) is closely related to, but does

9



not follow immediately from, the results of Calegari in [3] where it is shown that any
group acting on the plane by C1 diffeomorphisms and leaving invariant two disjoint,
compact, simply connected sets is left orderable, and that any group acting on R2 with
a bounded orbit is circularly orderable (a weaker notion than left orderability). The
constant 1√

3
k is again sharp.

A group G is said to be left orderable if it admits a total order < such that for
any a, b ∈ G, a < b if and only if ca < cb for all c ∈ G. It is not difficult to show
that for countable groups, being left orderable is equivalent to admitting a faithful
representation into Homeo+(R). Some examples of left orderable groups are Z, surface
groups, free groups, the group Aff+(R) of orientation-preserving affine transformations
of the line, and braid groups (see [3]). In fact, any finitely generated, residually torsion-
free, nilpotent group is left orderable. Additionally, a subgroup of a left orderable group
is left orderable, for it inherits any left order on the group. Some groups which are not
left orderable include groups with torsion elements, finite index subgroups of SL(n,Z)
for n ≥ 3, and more generally, arithmetic subgroups of simple algebraic groups over Q
of Q-rank ≥ 3 [10].

We will use the proof of Theorem 1.1 to show that a group acting on R2 with orbits
bounded as in Theorem 1.1 is left orderable. The tools that we need for this are the
following basic fact and two theorems:

Fact 4.1 (Lemma 2.19 in [3]). Left orderability behaves well under short exact sequences:
if A and C are left orderable groups and we have a short exact sequence

1→ A→ B → C → 1

then B must also be left orderable.

Theorem 4.2 (Burns–Hale [2]). If a group G satisfies the condition that every finitely
generated subgroup of G surjects to an infinite left orderable group, then G is left
orderable.

Theorem 4.3 (Thurston stability [9]). Let G be a group of C1 diffeomorphisms of Rn

with global fixed point p ∈ Rn. Let D : G→ GL(n,R) be the homomorphism given by
taking the derivative of the action of each element g at p, i.e. considering the linear
action of g on TpRn. Then any nontrivial finitely generated subgroup of ker(D) surjects
to Z.

Remark 4.4. The condition that every finitely generated subgroup of a group G
surjects to Z is called local indicability. It follows immediately from Burns–Hale is that
locally indicable implies left orderable; however, the converse is not true.

Combining Burns–Hale and Thurston stability shows in particular that ker(D) is
left orderable. We can now prove our orderability result, which we restate here for
convenience.

Corollary 1.2. Let G be a group acting on R2 by C1 diffeomorphisms, and satisfying
the property that there is some constant k and a ball B ⊂ R2 of radius r > 1√

3
k such

that for any g, h ∈ G and x ∈ B we have ‖g(x)− h(x)‖ ≤ k. Then G is left orderable.
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Proof. The proof of Theorem 1.1 shows that G leaves invariant a simply connected set
U and that there is a global fixed point for the action of G on the set of prime ends of
∂U , which is homeomorphic to a circle. Let H be any finitely generated subgroup of G.
If the action of H on P(U) is nontrivial, the global fixed point allows us to turn it into a
nontrivial, orientation-preserving action of H on R. Since Homeo+(R) is left orderable,
this gives a surjection from H to an infinite left orderable group. If this is not the case,
then H fixes ∂U pointwise. (It is easy to show that a group fixes all prime ends of a
region if and only if it fixes the boundary of the region pointwise.) In this situation we
will use Thurston stability. Let p be a point on ∂U and let D : H → GL(2,R) be the
derivative at p. That H fixes ∂U pointwise means that p is an accumulation point of
fixed points, so H fixes both p and a tangent vector at p and the image of D lies in
Aff+(R). Since Aff+(R) is left orderable, the image of D is as well. We now have the
following short exact sequence

1→ ker(D)→ H → D(H)→ 1

with ker(D) and D(H) left orderable. Fact 4.1 implies that H is left orderable as well.
Thus, in both cases we have a surjection from H to an infinite left orderable group, so
by Burns–Hale G is left orderable.

To see sharpness of the constant here, consider the cyclic group G generated by
rotation by 2π

3 about the origin. For each point x in any ball of radius r = 1√
3
k centered

at the origin we have ‖g(x) − h(x)‖ ≤ k for all g, h ∈ G, but this group is finite and
therefore not left orderable.
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