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Representation spaces

Γ = finitely generated group

G = topological group

Hom(Γ,G ) = space of homomorphisms Γ→ G .

Natural topology as subset of G |S | S a generating set for Γ.



Hom(Γ,G ): key interpretations

1. Geometric structures
M manifold, Γ = π1(M) , G ⊂ Homeo(X )

A (G ,X )-structure on M is determined by
ρ ∈ Hom(Γ,G ) (holonomy representation)

and ρ-equivariant developing map, M̃ → X

dev−→

(where g is the genus of M) and, given Σ, the qua-
dratic differentials form a complex vector space
! C3g−3. Thus all the CP1-structures form a space
homeomorphic to C6g−6. Furthermore, without
even “seeing” one structure, one understands the
whole moduli space globally as a cell of dimension
12g−12.

Figure 3. A small deformation of this
developing map maps M̃ to a domain in

CP
1 that has fractal boundary. The
corresponding representation is

quasi-Fuchsian, that is, topologically
conjugate to the original Fuchsian

representation. The developing map
remains an embedding, and the holonomy

representation embeds π1(M) onto a
discrete subgroup of PSL(2,C). In contrast
to the Fuchsian uniformization, where the

developing image is a round disc, now
the developing image has nonrectifiable

boundary.

The individual structures are rich and fascinat-
ing, however. One may start with the Fuchsian uni-
formization, that is, the representation of the Rie-
mann surfaceM as the quotient of a geometric disc
by a Fuchsian group and deform it along a path of
projective structures. (See Figure 1.)

In another direction, the uniformization ofM as
the quotient of a domain by a Schottky group gives
another projective structure whose developing
map is not injective although the holonomy group
is discrete. See [2] for more information and other
examples ofKleiniangroups.

For RP2-structures, which are structures mod-
elled on the real projective plane, similar results
are known.

For compact surfaces of genus g > 1, the defor-
mationspace iscompletelyknowntobeacountable
disjoint union of open cells of dimension 16(g − 1)
[1]. One component consists of structures that are
quotients of convex domains in RP2. However, it is
not immediately clear how these structures relate

to Riemann surfaces. Through a long development
of the theory of hyperbolic affine spheres, culmi-
nating with work of Labourie and Loftin, this space
naturally identifies with a holomorphic vector bun-
dle over Teichmüller space whose fiber over a point
〈M〉 is the space of holomorphic cubic differentials
on M . An example of such a projectively symmet-
rical convex domain is depicted on the cover of the
November2002issueoftheNotices (SeeFigure5).

Figure 4. As the deformation parameter
increases, the images of the fundamental

octagons eventually meet and overlap
each other. The developing map ceases to

be injective, and in fact winds all over
CP1. Typically the image of the holonomy

representation is dense in PSL(2,C).

Figure 5.
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[W. Goldman “What is a projective structure?”]



Hom(Γ,G ): key interpretations

2. Space of Γ-actions
M manifold, Γ = π1(M), G ⊂ Homeo(X )

Hom(Γ,G ) = space of Γ-actions on X

G specifies regularity of action, e.g. G = Isom(X ), G = conf(X ),
G = Diffr (X ).

Regularity matters!
Example: Hom(Zn,Diff1

+(S1))
recently shown to be connected (A. Navas, 2013)
Is Hom(Zn,Diff∞+ (S1)) connected? Locally connected? (open)



Hom(Γ,G ): key interpretations

3. Hom(Γ,G ) = space of flat G -bundles
M manifold, Γ = π1(M), G ⊂ Homeo(X ){

flat X -bundles over M
with structure group G

}
↔
{

representations
π1(M)→ G

}
= Hom(Γ,G )

bundle ↔ monodromy representation

equivalent bundles ↔ conjugate representations



Connected components

Connected components of Hom(Γ,G ) correspond to
deformation classes of structures

actions
bundles

Basic question: classify components

Example: G ⊂ GL(n,C), Lie group

⇒ Hom(Γ,G ) is an affine variety

⇒ finitely many components



Classical example: Hom(Γg ,PSL2(R))
Γg := π1(Σg ), PSL2(R) ⊂ Homeo+(S1)

• Theorem (Goldman, 1980)
Components of Hom(Γg ,PSL2(R)) are completely
distinguished by the Euler number, e(ρ).

• Milnor-Wood inequality (1958)
ρ ∈ Hom(Γg ,PSL2(R))⇒ −(2g − 2) ≤ e(ρ) ≤ 2g − 2

⇒ Hom(Γg ,PSL2(R)) has 4g-3 components

• Two components of Hom(Γg ,PSL2(R)) are Teichmüller space
= space of hyperbolic structures on Σg .
= set of discrete, injective representations Γg → PSL2(R)

= components where e(ρ) is maximal/minimal

• Higher Teichmüller theory studies Hom(Γg ,G ), G Lie group.



Hom(Γg ,G ), G ⊂ Homeo+(S1)

Known: G a Lie group.

• Hom(Γg ,S
1) is connected

• Hom(Γg ,PSL2(R)) has 4g − 3 components, distinguished by
e(ρ)

• Hom(Γg ,PSL(k)) 1→ Z/kZ→ PSL(k) → PSL2(R)→ 1

•
Theorem (Goldman, 1980)
Components of Hom(Γg ,PSL(k)) are
distinguished by e(ρ), unless k |(2g − 2)

If k|(2g − 2), there are k2g components where e(ρ) = ±2g−2
k

(the maximal/minimal values).



Flat circle bundles over surfaces

G = Homeo+(S1)

What are the connected components of Hom(Γg ,G )?

• more representations (even up to conjugacy)

• but easier to form paths between representations

Open Question

Does Hom(Γg ,Homeo+(S1)) have finitely many components?
Does Hom(Γg ,Diff+(S1)) have finitely many components?



Our results: Lower bound on number of components

Theorem 1 (M-)

For each divisor k 6= ±1 of 2g − 2,
There are at least k2g + 1 components of Hom(Γg ,Homeo+(S1))
where e(ρ) = 2g−2

k

i.e. e(ρ) does not distinguish components

and Hom(Γ4,Homeo+(S1)) has ≥ 165 components...

Moreover, two representations into PSL(k) that lie in different
components of Hom(Γg ,PSL(k)) cannot be connected by a path in
Hom(Γg ,Homeo+(S1)).



A picture: ρ : Γg → PSLk with e(ρ) = 2g−2
k

Start with ν : Γg →PSL2(R) with e(ν) = 2g − 2.

ν(b1) ν(a1)

Lift to k-fold cover of S1 for ρ : Γg → PSLk with e(ρ) = 2g−2
k



ρ(a1)
↓

ν(a1)



Our results: Rigidity phenomena

Theorem 2 (M-)

Let ρ : Γg → PSL(k), e(ρ) = ±(2g−2
k ). Then

Connected component of ρ
in Hom(Γg ,Homeo+(S1))

=
Semiconjugacy class of ρ

in Hom(Γg ,Homeo+(S1))

J. Bowden (2013): similar conclusion for Hom(Γg ,Diff∞+ (S1)), fundamentally

different techniques. Uses smoothness.

Our key tool: rotation numbers

Theorem (Rotation number rigidity ; M-)

Let ρ : Γg → PSL(k), e(ρ) = ±(2g−2
k ), γ ∈ Γg . Then rot(ρ(γ)) is

constant under deformations of ρ in Hom(Γg ,Homeo+(S1)).

rot(ρ(γ)) = rot(ρt(γ))



Rotation numbers

Definition (Poincaré)

rot : Homeo+(S1)→ R/Z. rot(f ) := lim
n→∞

f̃ n(0)
n mod Z

f̃ ∈ HomeoZ(R)

f ∈ Homeo+(S1)

• continuous

• rot(f ) = p/q ⇒ f has periodic point of period q

• rot(f m) = m rot(f )

Similarly, define r̃ot : HomeoZ(R)→ R by r̃ot(f̃ ) := lim
n→∞

f̃ n(0)
n ∈ R

• Depends on lift f̃ (not just f ).

However, a commutator [f , g ] ∈ Homeo+(S1) has a distinguished lift
[f̃ , g̃ ] so r̃ot[f , g ] makes sense.



rot is not a homomorphism!

• It is possible to have r̃ot(f̃ ) = r̃ot(g̃) = 0 and r̃ot(f̃ g̃) = 1

• Calegari-Walker (2011) give an algorithm to compute the
maximum value of r̃ot(f̃ g̃) given r̃ot(f̃ ) and r̃ot(g̃).

[D. Calegari, A. Walker, “Ziggurats and rotation numbers”]

• But... if f̃ g̃ = T n (translation by n), then r̃ot(f̃ ) + r̃ot(g̃) = n



Proof ideas for rotation number rigidity (Theorem 3)

Recall: Theorem 3
ρ : Γg → PSL(k), e(ρ) = ±(2g−2

k )
⇒ rot(ρ(γ)) constant under deformations of ρ.

Steps of proof:

1. The Euler number in terms of r̃ot

2. Reduce to a question of local maximality of r̃ot(f̃ g̃)

3. Dynamics and the Calegari-Walker algorithm

(4. Why r̃ot and e(ρ) are key.)



The Euler number e(ρ)

Classical definition is in terms of characteristic classes of circle bundles.

eZ ∈ H2(Homeo+(S1); Z). 〈ρ∗(eZ), [Γg ]〉 = e(ρ)

Definition (Milnor)

Γg = 〈a1, b1, ...ag , bg | [a1, b1][a2, b2]...[ag , bg ]〉
ρ : Γg → Homeo+(S1).

e(ρ) := r̃ot ([ρ̃(a1), ρ̃(b1)] ...[ρ̃(ag ), ρ̃(bg )])

• e is continuous on Hom(Γg ,G ) for any G ⊂ Homeo+(S1)

• [ρ(a1), ρ(b1)]...[ρ(ag ), ρ(bg )] = id on S1

⇒ [ρ̃(a1), ρ̃(b1)]...[ρ̃(ag ), ρ̃(bg )] = T e(ρ)



Step 2. (A question of local maximality)

ρt path in Hom(Γ2,Homeo+(S1)), ρ0 as in Theorem.

[ρ̃t(a1), ρ̃t(b1)] [ρ̃t(a2), ρ̃t(b2)] = T e(ρt)

r̃ot([ρt(a1), ρt(b1)]) + r̃ot([ρt(a2), ρt(b2)]) ≡ e(ρ0)

If we show: r̃ot([ρt(ai ), ρt(bi )]) has local max at t = 0,
then we know r̃ot([ρt(ai ), ρt(bi )]) is constant.

From here, same kind of work shows that that rot(ρt(ai )) and rot(ρt(bi )) are
both constant, ...and also rot(ρt(γ)) constant for any γ ∈ Γ.



Step 3. Dynamics and the Calegari-Walker algorithm

f0, g0 ∈ Homeo+(S1)
f̃0, g̃0 ∈ HomeoZ(R).

ft , gt deformations. Lift to paths f̃t , g̃t in HomeoZ(R)

f̃t , g̃t 	

ft , gt

Study t 7→ r̃ot(f̃t ◦ g̃t).

When is t = 0 a local maximum?



Step 3. Dynamics and the Calegari-Walker algorithm

Toy example:

f0

g0

Claim: rot(f0 ◦ g0) = 1/4
r̃ot(f̃0 ◦ g̃0) = 1/4



Step 3. Dynamics and the Calegari-Walker algorithm

dynamics at global maximum:

at local maximum:



Why look at rot and e?
rot and e “essentially determine the dynamics of a representation”.

Theorem (Ghys)

Γ any finitely generated group.
ρ : Γ→ Homeo+(S1) is determined (up to semiconjugacy) by the
bounded Euler class ρ∗(eZ) ∈ H2

b(Γ; Z).

Theorem (Matsumoto)

Γ any finitely generated group.
ρ : Γ→ Homeo+(S1) is determined (up to semiconjugacy) by the
bounded Euler class ρ∗(eR) ∈ H2

b(Γ; R) and the rotation numbers
of a set of generators for Γ.

For ρ : Γ→ Diff2
+(S1), determined up to conjugacy

Ghys’ and Matsumoto’s theorems let us use Rotation number
rigidity to prove Theorems 1 and 2.



Work in progress

• Do other representations satisfy rigidity properties?

• Distinguish other components of Hom(Γg ,Homeo+(S1)).

Example: is {ρ ∈ Hom(Γg ,Homeo+(S1)) : e(ρ) = 0}
connected?

• Hom(Γg ,Homeo+(S1)) vs. Hom(Γg ,Diff+(S1))

• What can analyzing rotation numbers tell us about
components of Hom(Γ,Homeo+(S1)), for other Γ?
(e.g. 3-manifold groups)


