Connected components of representation spaces

Kathryn Mann

University of Chicago

Representation spaces

 $\Gamma =$ finitely generated group

G = topological group

 $\mathsf{Hom}(\Gamma, G) = \mathsf{space} \ \mathsf{of} \ \mathsf{homomorphisms} \ \Gamma \to G.$

Natural topology as subset of $G^{|S|}$ S a generating set for Γ .

$Hom(\Gamma, G)$: key interpretations

1. Geometric structures

M manifold, $\Gamma = \pi_1(M)$, $G \subset \mathsf{Homeo}(X)$

A (G, X)-structure on M is determined by $\rho \in \operatorname{Hom}(\Gamma, G)$ (holonomy representation) and ρ -equivariant developing map, $\widetilde{M} \to X$

$Hom(\Gamma, G)$: key interpretations

2. Space of Γ -actions M manifold, $\Gamma = \pi_1(M)$, $G \subset \operatorname{Homeo}(X)$ $\operatorname{Hom}(\Gamma,G) = \operatorname{space of } \Gamma\text{-actions on } X$ G specifies regularity of action, e.g. $G = \operatorname{Isom}(X)$, $G = \operatorname{conf}(X)$, $G = \operatorname{Diff}^r(X)$.

```
Regularity matters! 
Example: \operatorname{Hom}(\mathbb{Z}^n,\operatorname{Diff}^1_+(S^1)) recently shown to be connected (A. Navas, 2013) 
Is \operatorname{Hom}(\mathbb{Z}^n,\operatorname{Diff}^\infty_+(S^1)) connected? Locally connected? (open)
```

$Hom(\Gamma, G)$: key interpretations

3.
$$\operatorname{\mathsf{Hom}}(\Gamma,G)=\operatorname{\mathsf{space}}$$
 of flat $G\operatorname{\mathsf{-bundles}}$ M manifold, $\Gamma=\pi_1(M),\ G\subset\operatorname{\mathsf{Homeo}}(X)$
$$\left\{\begin{array}{l} \text{flat X-bundles over M}\\ \text{with structure group G} \end{array}\right\} \leftrightarrow \left\{\begin{array}{l} \operatorname{\mathsf{representations}}\\ \pi_1(M)\to G \end{array}\right\} = \operatorname{\mathsf{Hom}}(\Gamma,G)$$
 bundle \leftrightarrow monodromy representation
$$\operatorname{\mathsf{equivalent}}$$
 bundles \leftrightarrow conjugate representations

Connected components

```
Connected components of \mathsf{Hom}(\Gamma,G) correspond to deformation classes of structures actions bundles
```

Basic question: classify components

Example: $G \subset GL(n, \mathbb{C})$, Lie group

 \Rightarrow Hom(Γ , G) is an affine variety

⇒ finitely many components

Classical example: $\mathsf{Hom}(\Gamma_g,\mathsf{PSL}_2(\mathbb{R}))$ $\Gamma_g := \pi_1(\Sigma_g), \;\; \mathsf{PSL}_2(\mathbb{R}) \subset \mathsf{Homeo}_+(S^1)$

- Theorem (Goldman, 1980) Components of $\operatorname{Hom}(\Gamma_g,\operatorname{PSL}_2(\mathbb{R}))$ are completely distinguished by the Euler number, $\operatorname{e}(\rho)$.
- Milnor-Wood inequality (1958) $\rho \in \operatorname{Hom}(\Gamma_g, \operatorname{PSL}_2(\mathbb{R})) \Rightarrow -(2g-2) \leq \operatorname{e}(\rho) \leq 2g-2$
 - \Rightarrow Hom $(\Gamma_g, PSL_2(\mathbb{R}))$ has 4g-3 components
- Two components of $\operatorname{Hom}(\Gamma_g,\operatorname{PSL}_2(\mathbb{R}))$ are Teichmüller space = space of hyperbolic structures on Σ_g .
 - = set of discrete, injective representations $\Gamma_g o \mathsf{PSL}_2(\mathbb{R})$
 - = components where $e(\rho)$ is maximal/minimal
- Higher Teichmüller theory studies $Hom(\Gamma_g, G)$, G Lie group.

$$\mathsf{Hom}(\Gamma_g,G),\ G\subset \mathsf{Homeo}_+(S^1)$$

Known: G a Lie group.

- Hom (Γ_g, S^1) is connected
- Hom $(\Gamma_g, \mathsf{PSL}_2(\mathbb{R}))$ has 4g-3 components, distinguished by $\mathsf{e}(\rho)$
- $\bullet \ \ \mathsf{Hom}\big(\mathsf{\Gamma}_{\boldsymbol{g}}\,,\mathsf{PSL}^{(\mathsf{k})}\big) \qquad \qquad 1 \to \mathbb{Z}/k\mathbb{Z} \to \mathsf{PSL}^{(\mathsf{k})} \to \mathsf{PSL}_2(\mathbb{R}) \to 1$

Theorem (Goldman, 1980)

Components of $\operatorname{Hom}(\Gamma_g,\operatorname{PSL}^{(k)})$ are distinguished by $\operatorname{e}(\rho)$, unless k|(2g-2)

If k|(2g-2), there are k^{2g} components where $e(\rho)=\pm\frac{2g-2}{k}$ (the maximal/minimal values).

Flat circle bundles over surfaces

$$G = \mathsf{Homeo}_+(S^1)$$

What are the connected components of $Hom(\Gamma_g, G)$?

- more representations (even up to conjugacy)
- but easier to form paths between representations

Open Question

Does $\mathsf{Hom}(\Gamma_g, \mathsf{Homeo}_+(S^1))$ have finitely many components? Does $\mathsf{Hom}(\Gamma_g, \mathsf{Diff}_+(S^1))$ have finitely many components?

Our results: Lower bound on number of components

Theorem 1 (M-)

For each divisor $k \neq \pm 1$ of 2g-2, There are at least $k^{2g}+1$ components of $\operatorname{Hom}(\Gamma_g,\operatorname{Homeo}_+(S^1))$ where $\operatorname{e}(\rho)=\frac{2g-2}{k}$

i.e. $\mathrm{e}(\rho)$ does not distinguish components and $\mathrm{Hom}(\Gamma_4,\mathrm{Homeo}_+(S^1))$ has ≥ 165 components...

Moreover, two representations into $PSL^{(k)}$ that lie in different components of $Hom(\Gamma_g, PSL^{(k)})$ cannot be connected by a path in $Hom(\Gamma_g, Homeo_+(S^1))$.

A picture: $\rho: \Gamma_g \to \mathsf{PSL}^k$ with $\mathsf{e}(\rho) = \frac{2g-2}{k}$

Start with $\nu : \Gamma_g \to \mathsf{PSL}_2(\mathbb{R})$ with $\mathsf{e}(\nu) = 2g - 2$.

Lift to *k*-fold cover of S^1 for $\rho: \Gamma_g \to \mathsf{PSL}^k$ with $\mathsf{e}(\rho) = \frac{2g-2}{k}$

Our results: Rigidity phenomena

Theorem 2 (M-)

Let
$$\rho: \Gamma_g \to \mathsf{PSL}^{(k)}$$
, $\mathsf{e}(\rho) = \pm (\frac{2g-2}{k})$. Then

$$\begin{array}{ll} \textit{Connected component of } \rho \\ \textit{in } \mathsf{Hom}(\Gamma_g, \mathsf{Homeo}_+(S^1)) \end{array} = \begin{array}{ll} \textit{Semiconjugacy class of } \rho \\ \textit{in } \mathsf{Hom}(\Gamma_g, \mathsf{Homeo}_+(S^1)) \end{array}$$

J. Bowden (2013): similar conclusion for $\mathsf{Hom}(\Gamma_g,\mathsf{Diff}_+^\infty(S^1))$, fundamentally different techniques. Uses smoothness.

Our key tool: rotation numbers

Theorem (Rotation number rigidity; M-)

Let $\rho: \Gamma_g \to \mathsf{PSL}^{(k)}, \mathsf{e}(\rho) = \pm(\frac{2g-2}{k}), \ \gamma \in \Gamma_g$. Then $\mathsf{rot}(\rho(\gamma))$ is constant under deformations of ρ in $\mathsf{Hom}(\Gamma_g, \mathsf{Homeo}_+(S^1))$.

$$rot(\rho(\gamma)) = rot(\rho_t(\gamma))$$

Rotation numbers

Definition (Poincaré)

 $\operatorname{\mathsf{rot}}:\operatorname{\mathsf{Homeo}}_+(S^1) o \mathbb{R}/\mathbb{Z}. \quad \operatorname{\mathsf{rot}}(f) := \lim_{n \to \infty} rac{ ilde{f}^n(0)}{n} \ \operatorname{\mathsf{mod}} \ \mathbb{Z}$

- continuous
- $rot(f) = p/q \Rightarrow f$ has periodic point of period q
- $rot(f^m) = m rot(f)$

Similarly, define $\operatorname{\tilde{r}ot}:\operatorname{\mathsf{Homeo}}_{\mathbb{Z}}(\mathbb{R})\to\mathbb{R}$ by $\operatorname{\tilde{r}ot}(\tilde{f}):=\lim_{n\to\infty}\frac{\tilde{f}^n(0)}{n}\in\mathbb{R}$

• Depends on lift \tilde{f} (not just f).

However, a commutator $[f,g] \in \mathsf{Homeo}_+(S^1)$ has a distinguished lift $[\tilde{f},\tilde{g}]$ so $\tilde{\mathsf{rot}}[f,g]$ makes sense.

rot is not a homomorphism!

- It is possible to have $\operatorname{ ilde{rot}}(ilde{f}) = \operatorname{ ilde{rot}}(ilde{g}) = 0$ and $\operatorname{ ilde{rot}}(ilde{f} ilde{g}) = 1$
- Calegari-Walker (2011) give an algorithm to compute the maximum value of \tilde{r} ot(\tilde{f} \tilde{g}) given \tilde{r} ot(\tilde{f}) and \tilde{r} ot(\tilde{g}).

[D. Calegari, A. Walker, "Ziggurats and rotation numbers"]

• But... if $\tilde{f}\tilde{g} = T^n$ (translation by n), then $\tilde{r}ot(\tilde{f}) + \tilde{r}ot(\tilde{g}) = n$

Proof ideas for rotation number rigidity (Theorem 3)

```
Recall: Theorem 3 \rho: \Gamma_g \to \mathsf{PSL}^{(\mathsf{k})}, \ \mathsf{e}(\rho) = \pm (\frac{2g-2}{k}) \Rightarrow \mathsf{rot}(\rho(\gamma)) constant under deformations of \rho.
```

Steps of proof:

- 1. The Euler number in terms of rot
- 2. Reduce to a question of *local maximality* of $rot(\tilde{f}\tilde{g})$
- 3. Dynamics and the Calegari-Walker algorithm
- (4. Why rot and $e(\rho)$ are key.)

The Euler number $e(\rho)$

Classical definition is in terms of characteristic classes of circle bundles.

$$e_{\mathbb{Z}} \in H^2(\mathsf{Homeo}_+(S^1); \mathbb{Z}). \quad \langle \rho^*(e_{\mathbb{Z}}), [\Gamma_g] \rangle = \mathsf{e}(\rho)$$

Definition (Milnor)

$$\Gamma_g = \langle a_1, b_1, ... a_g, b_g | [a_1, b_1][a_2, b_2]...[a_g, b_g] \rangle$$
 $\rho : \Gamma_g \to \mathsf{Homeo}_+(S^1).$

$$\underline{\mathsf{e}(\rho)} := \operatorname{\tilde{r}ot}\left(\left[\tilde{\rho}(\mathsf{a}_1), \tilde{\rho}(\mathsf{b}_1)\right] ... \left[\tilde{\rho}(\mathsf{a}_\mathsf{g}), \tilde{\rho}(\mathsf{b}_\mathsf{g})\right]\right)$$

- e is continuous on $Hom(\Gamma_g, G)$ for any $G \subset Homeo_+(S^1)$
- $[\rho(a_1), \rho(b_1)]...[\rho(a_g), \rho(b_g)] = \text{id on } S^1$ $\Rightarrow [\tilde{\rho}(a_1), \tilde{\rho}(b_1)]...[\tilde{\rho}(a_g), \tilde{\rho}(b_g)] = T^{e(\rho)}$

Step 2. (A question of local maximality)

 ρ_t path in $\text{Hom}(\Gamma_2, \text{Homeo}_+(S^1))$, ρ_0 as in Theorem.

$$\left[\widetilde{
ho}_t(a_1),\widetilde{
ho}_t(b_1)\right]\left[\widetilde{
ho}_t(a_2),\widetilde{
ho}_t(b_2)\right]=T^{e(
ho_t)}$$

$$\operatorname{rot}([\rho_t(a_1), \rho_t(b_1)]) + \operatorname{rot}([\rho_t(a_2), \rho_t(b_2)]) \equiv e(\rho_0)$$

If we show: $rot([\rho_t(a_i), \rho_t(b_i)])$ has local max at t = 0, then we know $rot([\rho_t(a_i), \rho_t(b_i)])$ is constant.

From here, same kind of work shows that that $rot(\rho_t(a_i))$ and $rot(\rho_t(b_i))$ are both constant, ...and also $rot(\rho_t(\gamma))$ constant for any $\gamma \in \Gamma$.

Step 3. Dynamics and the Calegari-Walker algorithm

$$egin{aligned} f_0, & g_0 \in \mathsf{Homeo}_+(S^1) \ & ilde{f}_0, & ilde{g}_0 \in \mathsf{Homeo}_{\mathbb{Z}}(\mathbb{R}). \end{aligned}$$

 f_t , g_t deformations. Lift to paths \widetilde{f}_t , \widetilde{g}_t in $\mathsf{Homeo}_\mathbb{Z}(\mathbb{R})$

Study $t \mapsto \tilde{\mathsf{rot}}(\tilde{f}_t \circ \tilde{g}_t)$.

When is t = 0 a local maximum?

Step 3. Dynamics and the Calegari-Walker algorithm

Toy example:

Claim:
$$rot(f_0 \circ g_0) = 1/4$$

 $rot(\tilde{f}_0 \circ \tilde{g}_0) = 1/4$

Step 3. Dynamics and the Calegari-Walker algorithm

dynamics at global maximum:

Why look at rot and e?

rot and e "essentially determine the dynamics of a representation".

Theorem (Ghys)

Γ any finitely generated group.

 $\rho:\Gamma\to \mathsf{Homeo}_+(S^1)$ is determined (up to semiconjugacy) by the bounded Euler class $\rho^*(e_{\mathbb{Z}})\in H^2_b(\Gamma;\mathbb{Z})$.

Theorem (Matsumoto)

 Γ any finitely generated group.

 $\rho:\Gamma \to \mathsf{Homeo}_+(S^1)$ is determined (up to semiconjugacy) by the bounded Euler class $\rho^*(e_\mathbb{R}) \in H^2_b(\Gamma;\mathbb{R})$ and the rotation numbers of a set of generators for Γ .

For $\rho:\Gamma\to \mathsf{Diff}^2_+(S^1)$, determined up to *conjugacy*

Ghys' and Matsumoto's theorems let us use *Rotation number rigidity* to prove Theorems 1 and 2.

Work in progress

- Do other representations satisfy rigidity properties?
- Distinguish other components of $\operatorname{Hom}(\Gamma_g,\operatorname{Homeo}_+(S^1))$. Example: is $\{\rho\in\operatorname{Hom}(\Gamma_g,\operatorname{Homeo}_+(S^1)): \operatorname{e}(\rho)=0\}$ connected?
- $\operatorname{Hom}(\Gamma_g, \operatorname{Homeo}_+(S^1))$ vs. $\operatorname{Hom}(\Gamma_g, \operatorname{Diff}_+(S^1))$
- What can analyzing rotation numbers tell us about components of Hom(Γ, Homeo₊(S¹)), for other Γ? (e.g. 3-manifold groups)