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Representation spaces

' = finitely generated group
G = topological group
Hom(l', G) = space of homomorphisms ' — G.

Natural topology as subset of GIS! S a generating set for T.



Hom(T, G): key interpretations
1. Geometric structures

M manifold, I = 71 (M) , G C Homeo(X)

A (G, X)-structure on M is determined by
p € Hom(I", G) (holonomy representation)
and p-equivariant developing map, M — X

[W. Goldman “What is a projective structure?”]



Hom(T, G): key interpretations

2. Space of -actions
M manifold, I' = 71 (M), G C Homeo(X)

Hom(I', G) = space of I-actions on X

G specifies regularity of action, e.g. G = Isom(X), G = conf(X),
G = Diff"(X).

Regularity matters!

Example: Hom(Z", Diff! (S1))

recently shown to be connected (A. Navas, 2013)

Is Hom(Z", Diff°(S')) connected? Locally connected? (open)



Hom(T, G): key interpretations

3. Hom(l', G) = space of flat G-bundles
M manifold, I = w1(M), G C Homeo(X)

flat X-bundles over M representations |
{ with structure group G } - { (M) — G } = Hom(T', G)

bundle < monodromy representation

equivalent bundles <> conjugate representations



Connected components

Connected components of Hom(I', G) correspond to
deformation classes of structures

actions

bundles

Basic question: classify components
Example: G C GL(n,C), Lie group

= Hom(l', G) is an affine variety

= finitely many components



Classical example: Hom(I',, PSL,(R))
My = m(5g), PSLa(R) C Homeo, (SY)

e Theorem (Goldman, 1980)
Components of Hom(I';, PSL>(R)) are completely
distinguished by the Euler number, e(p).

e Milnor-Wood inequality (1958)
p € Hom(l'g, PSL2(R)) = —(2g — 2) <e(p) < 2g -2

= Hom(I'g, PSL»(IR)) has 4g-3 components

e Two components of Hom(I'g, PSL>(RR)) are Teichmiiller space
= space of hyperbolic structures on ¥,.
= set of discrete, injective representations I'; — PSL(R)

= components where e(p) is maximal/minimal

e Higher Teichmiiller theory studies Hom(l,, G), G Lie group.



Hom(l,, G), G C Homeo, (S?)

Known: G a Lie group.

e Hom(Ig, St) is connected

e Hom(lz, PSLy(RR)) has 4g — 3 components, distinguished by

e(p)
o Hom(I, PSLK) 1 — Z/kZ — PSL() — PSL,(R) — 1
Theorem (Goldman, 1980)
J Components of Hom(Ig, PSL(K) are
v distinguished by e(p), unless k|(2g — 2)

2g—2

If k|(2g — 2), there are k€ components where e(p) = +=£;

(the maximal/minimal values).




Flat circle bundles over surfaces

G = Homeo  (S)
What are the connected components of Hom(I'z, G)?
e more representations (even up to conjugacy)

e but easier to form paths between representations

Open Question
Does Hom(l z, Homeo  (S1)) have finitely many components?
Does Hom(T 4, Diff . (S1)) have finitely many components?



Our results: Lower bound on number of components

Theorem 1 (M-)

For each divisor k #+ £1 of 2g — 2,

There are at least k?6 + 1 components of Hom(T z, Homeo (S!))
where e(p) = %

i.e. e(p) does not distinguish components

and Hom(T4, Homeo, (S*)) has > 165 components...

Moreover, two representations into PSLX) that lie in different
components of Hom(I ', PSL() cannot be connected by a path in
Hom(Tz, Homeo, (S1)).



A picture: p: T, — PSL* with e(p) = 2g—k_2

Start with v : Iy —PSLy(R) with e(v) =2g — 2.

I/(bl) 1/(31)

Lift to k-fold cover of S* for p: [, — PSL with e(p) = 22






Our results: Rigidity phenomena

Theorem 2 (M-)
Let p: Ty — PSLK), e(p) = £(%22). Then

Connected component of p Semiconjugacy class of p

in Hom(T;,Homeo(S')) —  in Hom(l,, Homeo  (S'))

J. Bowden (2013): similar conclusion for Hom(T z, Diff3°(S')), fundamentally
different techniques. Uses smoothness.

Our key tool: rotation numbers

Theorem (Rotation number rigidity; M-)

Let p: Ty — PSL(K e(p) = £(%22), v € T4. Then rot(p(7)) is
constant under deformations of p in Hom(Fg, Homeo_ (S1)).

rot(p(7)) = rot(pe(7))



Rotation numbers

Definition (Poincaré) )
rot : Homeo, (S?) — R/Z.  rot(f) := lim PO mod 7

n—oo

| 7 € Homeoy(R)

Q f € Homeo,(S')

e rot(f) = p/q = f has periodic point of period gq

e rot(f™) = mrot(f)

e continuous

Similarly, define fot : Homeoy(R) — R by Fot(f) := n[mm @ eR

e Depends on lift # (not just f).

However, a commutator [f, g] € Homeo, (S') has a distinguished lift
[f, &] so Fot[f, g] makes sense.



rot is not a homomorphism!

o It is possible to have Fot(f) = fot(g) = 0 and Fot(fg) = 1

o Calegari-Walker (2011)~give an algorithm to compute the
maximum value of fot(fg) given Fot(f) and Fot(g).

[D. Calegari, A. Walker, “Ziggurats and rotation numbers”]

e But... if f§ = T" (translation by n), then Fot(f) + fot(g) = n



Proof ideas for rotation number rigidity (Theorem 3)

Recall: Theorem 3
p:Tg— PSLK, e(p) = £(%52)
= rot(p(y)) constant under deformations of p.

Steps of proof:

1. The Euler number in terms of fot
2. Reduce to a question of local maximality of Fot(?gr)

3. Dynamics and the Calegari-Walker algorithm

(4. Why Fot and e(p) are key.)



The Euler number ¢(p)

Classical definition is in terms of characteristic classes of circle bundles.
ez € H2(Homeo. (S'):Z).  (p"(e2), [Tel) = e(p)

Definition (Milnor)
Fg = <31, bl, ...dg, bg’ [31, bl][az, b2]...[ag, bg]>
p: Tz — Homeo, (S?).

e(p) := Tot ([A(a1), A(br)] - [A(ag), H(bg)])

e e is continuous on Hom(I'g, G) for any G C Homeo. (S)

o [p(a1), p(b1)]-.-[p(ag), p(bg)] = id on S

=



Step 2. (A question of local maximality)

pe path in Hom(T2, Homeo, (S1)), po as in Theorem.

fot([pe(a1), pe(b1)]) + Fot([pe(a2), pe(b2)]) = e(po)

If we show: Fot([p:(a;), pt(bi)]) has local max at t =0,
then we know fot([p+(a;), pt(bi)]) is constant.

From here, same kind of work shows that that rot(p:(a;)) and rot(p:(b;)) are
both constant, ...and also rot(p:(7)) constant for any v € T.



Step 3. Dynamics and the Calegari-Walker algorithm

fo, & € Homeo, (S1)
fo, & € Homeoyz(R).

f;, g deformations. Lift to paths f, & in Homeoz(R)

Vof B O

O

Study t — Fot(?t o 8t).

When is t = 0 a local maximum?



Step 3. Dynamics and the Calegari-Walker algorithm

Toy example:

7 \is
NS

L Claim: rot(fy o go) = 1/4

< > % fot(fy 0 go) = 1/4



Step 3. Dynamics and the Calegari-Walker algorithm

dynamics at global maximum:

at local maximum:

O O




Why look at rot and e?

rot and e

Theorem (Ghys)

I any finitely generated group.
p: I — Homeo+(51) is determined (up to semiconjugacy) by the
bounded Euler class p*(ez) € HA(T; Z).

Theorem (Matsumoto)

" any finitely generated group.

p: T — Homeo, (S) is determined (up to semiconjugacy) by the
bounded Euler class p*(eg) € H2(I';R) and the rotation numbers
of a set of generators for T.

For p: I — Diff2 (S'), determined up to conjugacy

Ghys' and Matsumoto's theorems let us use Rotation number
rigidity to prove Theorems 1 and 2.



Work in progress

e Do other representations satisfy rigidity properties?

o Distinguish other components of Hom(I', Homeo . (S1)).

Example: is {p € Hom(T z, Homeo_ (S')) : e(p) = 0}
connected?

e Hom(l,, Homeo, (S)) vs. Hom(T z, Diff . (S1))
e What can analyzing rotation numbers tell us about

components of Hom(I', Homeo (S!)), for other I'?
(e.g. 3-manifold groups)



