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Abstract

Let M be a compact manifold, possibly with boundary. We show that the group of
homeomorphisms of M has the automatic continuity property : any homomorphism from
Homeo(M) to any separable group is necessarily continuous. This answers a question
of C. Rosendal. If N ⊂ M is a submanifold, the group of homeomorphisms of M that
preserve N also has this property.

Various applications of automatic continuity are discussed, including applications to
the topology and structure of groups of germs of homeomorphisms. In an appendix with
Frédéric Le Roux we also show, using related techniques, that the group of germs at a
point of homeomorphisms of Rn is strongly uniformly simple.

1 Introduction

Definition 1.1. A topological group G has the automatic continuity property if every
homomorphism from G to any separable group H is necessarily continuous.

One should think of automatic continuity as a very strong form of rigidity. Many
familiar topological groups fail to have the property, for example

• Automorphisms of R as a vector space over Q (other than homotheties) are discon-
tinuous homomorphisms R→ R.

• Applying a wild automorphism of C to all matrix entries gives a discontinuous
homomorphism GL(n,C)→ GL(n,C).

• More generally, for any field F of cardinality at most continuum, Kallman [11] gives
injective homomorphisms from GL(n, F ) to S∞, the group of permutations of an
infinite countable set. As S∞ admits a separable, totally disconnected topology,
GL(n, F ) fails to have automatic continuity as soon as F is not totally disconnected.

Remarkably, several “big” groups do have the automatic continuity property; a current
research program in descriptive set theory aims to show that automorphism groups of
certain structures have automatic continuity. Examples of such groups known to have
automatic continuity include the infinite-dimensional unitary group [21], the full groups
of some ergodic equivalence relations [14], the isometries of the Urysohn space [20], the
order-preserving automorphisms of Q and homeomorphisms of 2N and of R [19], and the
homeomorphism groups of compact 2-dimensional manifolds [18]. The primary goal of
this paper is to prove the following.
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Theorem 1.2. Let M be a compact manifold, possibly with boundary, and let Homeo0(M)
denote the identity component of the group of homeomorphisms of M (with the standard
C0 topology). Then Homeo0(M) has automatic continuity.

Of course, this immediately implies that Homeo(M) has automatic continuity as well.
We also prove automatic continuity for the subgroup of homeomorphisms of M that
preserve a submanifold, and a form of automatic continuity for homeomorphism groups of
noncompact manifolds.

1.1 Main applications

The proof of Theorem 1.2 indicates that there is a deep relationship between the topology
of a manifold and the topology and algebraic structure of its homeomorphism group. In
Section 5 we describe three applications.

I. Uniqueness results. A first consequence of automatic continuity is a new proof of a
theorem of Kallman.

Theorem 1.3 ([10]). Let M be a compact manifold. The group Homeo0(M) has a unique
complete, separable topology.

II. Extension problems. Epstein and Markovic [5] asked whether every extension homo-
morphism Homeo0(S1)→ Homeo0(D2) is continuous. Automatic continuity immediately
gives a positive answer, as well as for the more general question of extensions replacing
the pair (D2, S1) with (M,N), where N is either a submanifold or boundary component
of M . A more subtle variant of this question was asked by Navas.

Question 1.4 (Navas). Let G+(Rn, 0) denote the group of germs at 0 of orientation
preserving homeomorphisms of Rn fixing 0. Does there exist an extension homomorphism
G+(Rn, 0)→ Homeo(Rn, 0)?

We use automatic continuity to prove a much stronger result, which also implies that
the group of germs does not admit a separable topology.

Theorem 1.5. Let H be any separable group. Then any homomorphism G+(Rn, 0)→ H
is trivial.

The proof uses the algebraic simplicity of G+(Rn, 0), a strong form of which is proved in
the appendix.

We also discuss related problems on homomorphisms between groups of germs, and
progress on problems involving homomorphisms between groups of homeomorphisms, a
topic that has recently attracted significant attention.

III. Nonsmoothing. A third application is a global “algebraic nonsmoothing” theorem.
Recall that an action of a group G on a manifold M is Cr-smoothable if it is topologically
conjugate to an action by Cr diffeomorphisms. Although this is a dynamical constraint
on the action, it is also interesting to ask whether the algebraic structure of G is an
obstruction to actions of higher regularity.

Motivated by this, define the regularity of an abstract group G to be the largest r
such that there exists a manifold M and a nontrivial homomorphism G→ Diffr(M). If
G ⊂ Homeo0(M), we call a faithful action of G on a manifold N by Cr diffeomorphisms
a algebraic Cr–smoothing of G. We show the following.

Theorem 1.6. Let M be a compact manifold. Then Homeo0(M) has regularity 0. In
particular, Homeo0(M) is not algebraically C1–smoothable.
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2 The structure of Homeo(M)

We introduce some algebraic and topological properties of homeomorphism groups that
will be used throughout the paper. We assume all topological manifolds to be metric, but
otherwise arbitrary. Much of the material in this section is standard.

Definition 2.1. Let M be a compact manifold. The C0 topology on Homeo(M) is
induced by the metric

d(f, g) := max
x∈M

dM (f(x), g(x))

where dM is any compatible metric on M .

This topology is separable, and independent of the choice of metric on M , provided
that dM is compatible, i.e. it generates the topology of M . Although the metric given
above is not complete, Homeo(M) does admit a complete metric, in fact the metric
D(f, g) := d(f, g) + d(f−1, g−1) is such an example (c.f. Corollary 1.2.2 in [2]).

If N ⊂M is a closed d-dimensional submanifold – meaning that the pair (M,N) has
local charts to (Rn,Rd) – define the relative homeomorphism group

Homeo(M relN) := {f ∈ Homeo(M) | f(N) = N}

This is a C0–closed subgroup and hence also completely metrizable. Its identity component
is denoted by Homeo0(M relN).

Support and fragmentation. The support of a homeomorphism f , denoted supp(f),
is the closure of the set {x ∈M | f(x) 6= x}. In our proof of automatic continuity, we will
make frequent use of the fact that homeomorphisms with small support are close to the
identity – this is the most basic relationship between the topology of Homeo0(M) and M .

Although homeomorphisms close to the identity need not have small support, the
fragmentation property states that a homeomorphism sufficiently close to the identity can
be expressed as the product of a bounded number of homeomorphisms with small support.

Definition 2.2 (Local fragmentation). A group G ⊂ Homeo(M) has the local fragmenta-
tion property if the following holds. Given any finite open cover {E1, ...Em} of M , there
exists a neighborhood U of the identity in G such that each g ∈ U can be factored as a
composition g = g1g2 . . . gm, where supp(gi) ⊂ Ei.
Proposition 2.3 (Edwards–Kirby, [4]). Let M be a compact manifold, possibly with
boundary. Then Homeo0(M) has the local fragmentation property. If N ⊂ M is an
embedded submanifold, then Homeo0(M relN) also has the local fragmentation property.

Proof. The proof for Homeo0(M) is given in the proof of Corollary 1.3 of Edwards–Kirby
[4]. It relies on the topological torus trick. Note that, although the statement of Corollary
1.3 in [4] is not equivalent to the local fragmentation property as we have stated it, our
statement is precisely the first step in their proof. The case of Homeo0(M relN) also
follows from Edwards and Kirby’s work by using the relative version of their deformation
theorem, this is explained in Remark 7.2 of [4].
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Perfectness. Recall that a group G is perfect if any element can be written as a product
of commutators. We will use the following uniform version for homeomorphisms supported
on embedded balls.

Proposition 2.4 (Uniform perfectness). Let B ⊂M be an embedded open ball. Then
any f ∈ Homeo0(M) with supp(f) ⊂ B can be written as f = [a, b] where supp(a) ⊂ B
and supp(b) ⊂ B.

Proof. This result is “folklore”, the earliest proof known to the author is the following
argument of Anderson [1]. Suppose that supp(f) ⊂ B. Since supp(f) is compact and
B open, there exists b ∈ Homeo0(M) with supp(b) ⊂ B and such that bn(supp(f)) ∩
bm(supp(f)) = ∅ for any m 6= n. Define a by

a(x) =

{
bnfb−n(x) if x ∈ bn(supp(f)), for some n ≥ 0
x otherwise

Then supp(a) ⊂ B and [a, b] = f .

Anderson’s argument can easily be modified to give a relative version for balls in-
tersecting ∂M or intersecting an embedded submanifold N . To state this precisely,
define a half ball in Mn to be a proper embedding of {(x1, ...xn) ∈ Bn | xn ≥ 0}, i.e.
with the image of Bn ∩ {xn = 0} in ∂M ; and similarly if Nd ⊂ Mn is an embedded
d-dimensional submanifold, define a relative ball to be an embedding ψ : Bn →M such
that ψ(Bn ∩ Rd) = Nd ∩ ψ(Bn).

Proposition 2.5. (Uniform perfectness, relative case)

i) Let M be a manifold of dimension at least 2, and B an open half-ball intersecting
∂M . Any f ∈ Homeo0(M) with supp(f) ⊂ B can be written as f = [a, b] where a
and b are both supported in B.

ii) Let N ⊂ M be an embedded submanifold of dimension at least 1, and let B be
a relative ball in M . Then any f ∈ Homeo0(M relN) with supp(f) ⊂ B can be
written as f = [a, b] where a, b ∈ Homeo0(M relN) are both supported in B.

The proof is exactly the same – it requires no changes if supp(f) is disjoint from ∂M
or N , and if supp(f) ∩ ∂M 6= ∅ or supp(f) ∩N 6= ∅ one simply takes the iterates of b to
translate supp(f) to a collection of disjoint relative or half-balls in B.

Remark 2.6 (Perfectness of homeomorphism groups). The reader will note that Proposi-
tion 2.4 together with fragmentation implies that the groups Homeo0(M) and Homeo0(M relN)
are perfect, though not necessarily uniformly perfect – a much more subtle question. See
e.g. [3], [22], and references therein.

3 Proof of Theorem 1.2

For the rest of this section, we fix a separable topological group H, and assume that
φ : Homeo0(M) → H is a homomorphism. For simplicity, we first treat only the case
where M is closed; modifications for the case where ∂M 6= ∅ and the relative case of
Homeo0(M relN) are discussed in Section 4.1, along with a comment for noncompact M .

The proof is somewhat involved, so we have divided it into three major steps. The
first is general set-up; the second a “localized” version of continuity (for homeomorphisms
with support in a small ball), and the third step improves this local result to a global
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version by careful use of the fragmentation property. There is a delicate balancing act
between steps 2 and 3; in particular, it will be necessary to construct a particular kind of
efficient cover of the manifold M to use in the fragmentation argument.

Step 1: set-up for the proof

Since φ is a group homomorphism, it suffices to show continuity at the identity. In other
words, we need to prove the following.

3.1. For any neighborhood V of the identity in H, there exists a neighborhood U of the
identity in Homeo0(M) such that U ⊂ φ−1(V ).

We first use the Baire category theorem to extract an “approximate” version of condition
3.1.

Lemma 3.2. Let V be a neighborhood of the identity in H. There exists a neighborhood
U of the identity in Homeo0(M) such that U is contained in the closure of φ−1(V ).

Remark 3.3. The proof given below works generally for homomorphisms from any Polish
group to a separable group; see e.g. [5] for one instance of this (where it is called “Baire
category continuity”) and [19] for another in the context of groups with the “Steinhaus
property”.

Proof of Lemma 3.2. Take a smaller neighborhood of the identity V0 ⊂ V such that V0
is symmetric (i.e. v ∈ V0 ⇔ v−1 ∈ V0), and such that V 4

0 ⊂ V . Let {hi} be a countable
dense subset of H, so that

H =
⋃
i

hiV0.

Let W = φ−1(V 2
0 ). For each translate hiV0 that intersects the image of Homeo0(M),

choose an element φ(gi) ∈ hiV0. Then φ(gi) = hivi for some vi ∈ V , and so

hiV0 = φ(gi)v
−1
i V0 ⊂ φ(gi)V

2
0 .

Thus
φ(Homeo0(M)) ⊂

⋃
i

φ(gi)V
2
0

and, taking pre-images, we have

Homeo0(M) =
⋃
i

giW.

Since Homeo0(M) is a Baire space, it cannot be covered by countably many nowhere
dense sets. Thus, W is dense in the neighborhood of some g ∈ Homeo0(M), so

WW−1 = φ−1(V 4
0 ) ⊂ φ−1(V )

is dense in some neighborhood of the identity in Homeo0(M). This proves the lemma.

Of course, improving “dense in a neighborhood of the identity” to “contains a neighborhood
of the identity” is a nontrivial matter and the main goal of this work!
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Step 2: A localized version (after Rosendal)

As in Step 1, assume that we have fixed a homomorphism φ : Homeo0(M)→ H, and a
neighborhood V of the identity in H, with the aim of showing that φ satisfies condition
3.1.

The “localized version” of Condition 3.1 that we aim to prove here states, loosely
speaking, that a homeomorphism f ∈ Homeo0(M) with sufficiently small support lies in
φ−1(V ). The precise statement that we will use in the next step is given in Lemma 3.8
below. Our strategy is to build up to this statement gradually, using a series of lemmata
guided by Rosendal’s work in [18].

Notation 3.4. As in Lemma 3.2, we start by fixing a smaller, symmetric neighborhood
of the identity V0 ⊂ V such that V 8

0 ⊂ V . Let W = φ−1(V0).

The first lemma is a very rough version of our end goal. It states that in any
neighborhood of any point of M , we can find an open ball so that all diffeomorphisms
supported on that ball are restrictions of elements in φ−1(V 2

0 ) ⊂ φ−1(V ).

Lemma 3.5. Let B ⊂ M be an embedded ball. There exists a ball B′ ⊂ B such
that for every f ∈ Homeo0(M) with supp(f) ⊂ B′, there is an element wf ∈ W 2 with
supp(w) ⊂ B and such that the restriction of wf to B′ agrees with f .

Proof. Let B ⊂ M be an embedded ball. The argument from the proof of Lemma 3.2
implies that there exists a countable set {gi} ⊂ Homeo0(M) such that

Homeo0(M) =
⋃
i

giW.

We first prove a related claim for these translates of W .

Claim 3.6. There exists a ball B′ ⊂ B, and a left translate giW such that if supp(f) ⊂ B′,
then there exists wf ∈ giW such that

i) supp(wf ) ⊂ B, and

ii) the restriction of wf to B′ agrees with f .

Proof of claim. Let Bi, i = 1, 2, ... be a sequence of disjoint balls with disjoint closures,

with diameter tending to 0, and with the closure of
∞⋃
i=1

Bi contained in B.

We will show that for some i, every f ∈ Homeo0(M) with supp(f) ⊂ Bi agrees with
the restriction of an element of giW supported on B.

Suppose for contradiction that this is not the case. Then there is a sequence fi ∈
Homeo0(M) with supp(fi) ⊂ Bi and such that fi does not agree with the restriction to
Bi of any element of giW supported on B. Using this sequence of counterexamples, define
a homeomorphism F (x) by

F (x) =

{
fi(x) if x ∈ Bi for some i
x otherwise

Since the translates of W cover Homeo0(M), there is some gi such that F ∈ giW . But by
construction F restricts to fi on Bi – this gives a contradiction and proves the claim.

To finish the proof of Lemma 3.5, let B′ ⊂ B be the ball given by Claim 3.6. Let
f ∈ Homeo0(M) satisfy supp(f) ⊂ B′. Then f is the restriction to W of some w1 ∈ giW .
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Since id ∈ Homeo0(M) has trivial support, Claim 3.6 implies that there exists some
w2 ∈ giW restricting to the identity on B′, so define

wf := w−12 w1 ∈Wg−1i giW = W 2.

Then supp(wf ) ⊂ B and wf restricted to B′ agrees with f .

Lemma 3.5 states that certain homeomorphisms with small support are restrictions
of elements of W 2 ⊂ φ−1(V ); recall that our goal is to show that homeomorphisms with
small support are elements of φ−1(V ). We remove the “restriction” condition now, at the
cost of enlarging W 2 to W 8, by using a trick with commutators. Since W 8 ⊂ φ−1(V ),
this will achieve our goal.

Lemma 3.7. Let B ⊂M be an embedded ball. There exists a ball B′′ ⊂ B such that, if
f ∈ G has supp(f) ⊂ B′′, then f ∈W 8.

Proof of Lemma 3.7. Let B ⊂M be an embedded ball. Apply Lemma 3.5 to find a ball
B′ ⊂ B such that if supp(f) ⊂ B′, then f agrees on B′ with the restriction of an element
wf ∈W 2 with supp(wf ) ⊂ B.

Now apply Lemma 3.5 to B′ to find a smaller ball B′′ ⊂ B′ ⊂ B such that if
f ∈ Homeo0(M) has supp(f) ⊂ B′′, then f agrees on B′′ with the restriction of an
element wf ∈W 2 with supp(wf ) ⊂ B′.

Let f have support in B′′. Using Proposition 2.4, write f = [a, b], where supp(a) ⊂ B′′
and supp(b) ⊂ B′′. By Lemma 3.5, there exists wa ∈W 2 with supp(wa) ⊂ B′ and such
that the restriction of wa toB′′ agrees with a. There also exist wb ∈W 2 with supp(wb) ⊂ B
and such that the restriction of wb to B′ agrees with b. Since supp(wa) ∩ supp(wb) ⊂ B′′,
we have [a, b] = [wa, wb] and hence

f = [a, b] = [wa, wb] ∈W 8.

Summarizing our work so far, we shown the following.

For any embedded ball B ⊂ M , there exists a ball B′ ⊂ B such that, if
supp(f) ⊂ B′ then f ∈ φ−1(V ).

In other words, homeomorphisms that are supported in B′ have image close to the
identity under φ. At this point, the natural (naive) strategy to finish the proof would be to
try and use fragmentation to write any homeomorphism close to the identity as a bounded
product of homeomorphisms supported on balls “like” B′. Unfortunately, Lemma 3.7
gives us no control on the size of B′, so we do not yet have any means to reasonably cover
M with a bounded number of balls that have this property.

To remedy this, we first strengthen Lemma 3.7 to a similar statement for disjoint
unions of balls, getting us closer to a genuine cover of M .

Lemma 3.8. Let {Bα} be a finite collection of disjoint open balls in M . Then there exist
open balls B′′α ⊂ Bα such that, if f ∈ Homeo0(M) has supp(f) ⊂ B′′α, then f ∈ φ−1(V ).

The proof consists in running the arguments from Lemmas 3.5 to 3.7 on all the balls
Bα simultaneously. We state below the necessary modifications to do this.

Proof. Let W be as in Notation 3.4 above. First, we modify Claim 3.6 as follows.
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Claim 3.9. There exist balls B′α ⊂ Bα, and a left translate giW such that, if supp(f) ⊂
tαB′α, then there exists wf ∈ giW with supp(wf ) ⊂ tαBα and such that the restriction
of wf to tαB′α agrees with f .

To prove this claim, imitate the proof of Claim 3.6 by taking a sequence of disjoint balls
Bα,i ⊂ Bα for each α, and supposing for contradiction that there existed fi supported on
tαBα,i but not in giW . Taking the “infinite composition” F of the fi as before gives the
desired contradiction. Composing with the identity as in Lemma 3.5 now shows that any
f ∈ Homeo0(M) with support in tαB′α actually lies in W 2.

Finally, as in the original proof of Lemma 3.7, we can apply this construction twice to
find balls B′′α ⊂ B′α ⊂ Bα such that if supp(a) ⊂ tαB′′α, then f agrees with the restriction
of an element of W 2 supported on tαB′α, and if supp(b) ⊂ tαB′α, then b agrees with an
element of W 2 supported on tαBα. The same commutator trick using Proposition 2.4
now applies to show that any element f ∈ Homeo0(M) with supp(f) ⊂ tαB′′α lies in W 8.

Step 3: Local to global

To finish the proof, we will improve the local result of Lemma 3.8 to a global result by
using fragmentation with respect to an efficient cover, in the sense described below. We
assume that M has been given a metric dM .

Lemma 3.10 (Existence of an efficient cover). Let M be a compact manifold. There
exists m ∈ N (depending only on M) such that, for all ε sufficiently small, there is a
cover {E1, E2, ...Em} of M where each set Ei consists of a finite union of disjoint balls of
diameter at most ε.

In this statement, “ball” means a homeomorphic image of a ball, rather than a metric
ball. The key point is that the constant m does not depend on ε. We defer the proof of
this lemma to the end of this section, showing first how to use the efficient cover to finish
the proof of the main theorem.

Proof of Theorem 1.2, given Lemma 3.10. As before, let φ : Homeo0(M) → H be a
homomorphism, let V ⊂ H be a neighborhood of the identity, and let m be the constant
given by Lemma 3.10. Using our usual trick, we take a smaller symmetric neighborhood
of the identity V0 such that V 12m

0 ⊂ V .
Let W = φ−1(V0). In order to show that φ satisfies condition 3.1, it suffices to find a

neighborhood U of the identity in Homeo0(M) such that

U ⊂W 12m ⊂ φ−1(V ).

By Lemma 3.2, there exists a neighborhood of the identity in Homeo0(M) contained
in the closure of W 2. Let ε be small enough so that this neighborhood contains the set

{f ∈ Homeo0(M) | dM (f(x), x) < ε for all x ∈M}.

In particular, any homeomorphism supported on a ball of radius ε in M is contained in
this neighborhood, hence in the closure of W 2. Now using this ε, build an efficient cover
{E1, E2, ..., Em} as in Lemma 3.10, and let {Biα} denote the set of disjoint homeomorphic
images of balls of diameter at most ε comprising Ei.

By Lemma 3.8, there exist balls (Biα)′′ ⊂ Biα such that any f with supp(f) ⊂ tα(Biα)′′

satisfies f ∈W 8. Let hi ∈ Homeo0(M) be supported on a small neighborhood of tαBiα,
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and such that the closure of hi(B
i
α) is contained in (Biα)′′. Since the balls Biα have

diameter at most ε, there exists such a homeomorphism hi with supx∈M dM (hi(x), x) < ε.
Thus, hi can be approximated by some element wi ∈W 2. In particular this implies that
there exists wi ∈W 2 such that wi(tαBiα) ⊂ (tαBiα)′′.

We can now finally show that there is a neighborhood of the identity in Homeo0(M)
contained in W 12m. Since Homeo0(M) has the local fragmentation property (Proposition
2.3), there is a neighborhood U of the identity in Homeo0(M) such that for all f ∈ U , we
can write

f = f1f2...fm

with supp(fi) ⊂ Ei. Then supp(w−1i fiwi) ⊂ tα(Biα)′′, so w−1i fiwi ∈ W 8 which implies
that fi ∈ W 12. It follows that f ∈ W 12m, as desired. This completes the proof of the
theorem.

It remains only to prove Lemma 3.10. Our construction uses ε-nets, so we begin by
recalling the definition of an ε-net. Here, and in the proof of the Lemma, we use the
notation B(r, x) for the metric ball of radius r about a point x.

Definition 3.11. Let M be a metric manifold. An ε-net is a finite set of points {x1, ...xk}
in M satisfying

i)
n⋃
i=1

= B(ε, xi) = M , and

ii) B(ε/2, xi) ∩B(ε/2, xj) = ∅ for i 6= j.

Similarly, we define an ε-net cover of M to be a set of balls {B(ε, xi)} such that the union
of the centers {xi} forms an ε-net.

We’ll now show that, for Riemannian manifolds, an ε-net cover fulfills the requirements
of Lemma 3.10. The general (non-Riemannian) case will be a small modification.

Proof of Lemma 3.10. Let M be a compact manifold. Assume first that M is equipped
with a Riemannian metric.

Recall that, for any cover {Ai}, the dual graph of the cover is the graph with vertex set
{Ai} and an edge between Ai and Aj whenever Ai ∩Aj 6= ∅. We first prove a regularity
result on the dual graphs of ε-net covers.

Claim 3.12. There exists λ > 0 and m = m(M) ∈ N such that, for every ε < λ, the dual
graph of any ε-net cover of M has degree less than m.

Proof. Take ε > 0, and let {B(ε, xi)} be an ε-net cover. If there is an edge between
{B(ε, xi)} and {B(ε, xj)} in the dual graph, then xj ∈ B(2ε, xi). Since B(ε/2, xi) ∩
B(ε/2, xj) = ∅, the degree of the vertex {B(ε, xi)} is bounded above by

inf

{
vol(B(2ε, xi))

vol(B(ε/2, x))
| x ∈ B(2ε, xi)

}
Since M is compact, the limit of this ratio as ε → 0 is bounded, and can be taken
independent of the point xi. Let m be any integer so that m− 1 is strictly larger than
this bound. It follows that, if λ > 0 is sufficiently small, then for any ε < λ, the degree of
a vertex in the dual graph to any ε-net cover will be bounded by m− 1.
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To finish the proof of the lemma in the Riemannian case, note that any graph of degree
less than m admits a proper coloring with m colors. (In fact, this bound is given by the
greedy coloring). As a consequence, if m and λ are the constants from the claim, then
for all ε < λ, any ε-net cover of M can be partitioned into m subsets E1, E2, ..., Em, each
consisting of a disjoint union of metric balls of radius ε.

For the general case, we cover M by finitely many charts ψi : Di →M where each Di

is a copy of the standard unit ball in Rn. For concreteness, say the number of charts is
k. Also, we can assume without loss of generality that each ψi is uniformly continuous.
The argument above shows that there exists m0 such that, for any δ > 0 each Di can be
covered by m0 sets Ei,1, Ei,2, ... consisting of disjoint metric balls of diameter δ. Given
ε > 0, we may use uniform continuity of ψi to choose δ small enough so that each φ(Ei,j)
consists of a union of homeomorphic images of balls of diameter at most ε. This gives the
desired covering of M by m := m0k sets.

Remark 3.13. With a little more work (e.g. covering first a neighborhood of the 1-
skeleton of a triangulation, then 2-cells, etc.) it should be possible to produce a constant
m that depends only on the dimension of M , at least in the case where M has a CW
structure. But we do not need this stronger fact.

4 A broader picture

4.1 Automatic continuity in the relative and boundary case

To prove automatic continuity for Homeo0(M) when ∂M 6= ∅, or for Homeo0(M relN)
when N is an embedded submanifold of dimension at least 1, one needs essentially no new
ingredients besides the relative versions of perfectness and fragmentation stated in Section
2. Step 1 of the proof carries through verbatim, we list here the necessary modifications
in Step 2 and 3.

Step 2: the “local” version for half- or relative-balls. Recall that a half ball in
M is a proper embedding of {(x1, ...xn) ∈ Bn | xn ≥ 0}. Lemma 3.7 has a straightforward
reformulation for half-balls.

Lemma 4.1. Let B ⊂M be an embedded half-ball. Then there exists a half-ball B′′ ⊂ B
such that, if f ∈ G has supp(f) ⊂ B′′, then f ∈W 8.

The proof is identical to the proof for balls in the interior ofM , one simply replaces “ball”
with “half-ball” everywhere, starting in Lemma 3.5, and uses the version of Proposition
2.4 for half-balls. This gives a version of Lemma 3.8 for manifolds with boundary.

Lemma 4.2. Let {Bα} be a finite collection of disjoint open balls or half-balls in M . Then
there exist open balls or, respectively, half-balls B′′α ⊂ Bα such that if f ∈ Homeo0(M)
has supp(f) ⊂ B′′α, then f ∈W 8.

Similarly, for the relative case we have

Lemma 4.3. Let M ⊂ N be an embedded submanifold, and {Bα} a finite collection of
disjoint open balls or relative-balls in M . Then there exist open balls or, respectively,
relative-balls B′′α ⊂ Bα such that if f ∈ Homeo0(M) has supp(f) ⊂ B′′α, then f ∈W 8.
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Step 3: efficient covers. Given Lemma 4.3, the only missing ingredient to run the
argument of Step 3 for manifolds with boundary or relative homeomorphism groups is
Lemma 3.10 on efficient covers. In fact, the same proof works for this case: if N ⊂M is
an embedded submanifold, then, provided ε is chosen sufficiently small, in the Riemannian
case each ball in an ε-net cover that intersects N will actually be an embedded relative
ball, so the argument on existence of efficient covers runs verbatim, just replacing “ball”
by “ball or relative ball”. The general case follows by picking appropriate charts for the
pair N,M . The same modification also works in the case where ∂M 6= ∅.

4.2 Noncompact manifolds

In [9], Hurtado defines a notion of weak continuity for homomorphisms – a homomorphism
φ from Homeo0(M) to another group is weakly continuous if, for every compact set
K ⊂M , the restriction of φ to the subgroup of homeomorphisms with support contained
in K is continuous. Our proof of Theorem 4.7 also shows the following.

Corollary 4.4. Let M be any manifold, and φ : Homeo0(M)→ H a homomorphism to
a separable topological group. Then φ is weakly continuous.

For general non-compact M , the compact-open topology on Homeo0(M) is separable
and completely metrizable. Thus, it is reasonable to ask whether automatic continuity
holds for such groups.

Question 4.5. Does Homeo0(M), with the C0 compact-open topology, have automatic
continuity when M is noncompact?

4.3 The Steinhaus condition for Polish groups.

In [19], Rosendal and Solecki give a condition on a topological group that implies that the
group has automatic continuity. This condition is called Steinhaus.

Definition 4.6. A topological group G is Steinhaus if there is some n ∈ N such that,
whenever W ⊂ G is a symmetric set such that countably many left-translates of W cover
G, there exists a neighborhood of the identity of G contained in Wn.

Note that in the definition of Steinhaus the exponent n depends only on the group
G, but the neighborhood of the identity in G is allowed to depend on W . The proof
that Steinhaus implies automatic continuity is a Baire category theorem argument as in
Lemma 3.2 above.

Our proof of automatic continuity for homeomorphism groups actually shows that
Homeo0(M) and Homeo0(M relN) are Steinhaus – the reader may check that, in each
step where we referenced the set W = φ−1(V0), the only property we ever used of W was
that Homeo0(M) was the union of countably many left-translates giW . Our choice to
retain the reference to φ−1(V0) was primarily for the purpose of making the proof more
transparent. In effect, what we actually proved was the following:

Theorem 4.7. Let M be a compact manifold, possibly with boundary. Then Homeo0(M)
is Steinhaus. If N ⊂M is an embedded closed submanifold of dimension at least 1, then
Homeo0(M relN) is also Steinhaus.
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5 Applications

5.1 A uniqueness result

As a first application, we give a new short proof of Kallman’s theorem from [11] (Theorem
1.3 in the introduction), that Homeo0(M) has a unique complete, separable topology.

Proof of Theorem 1.3. Put any complete, separable topology on Homeo0(M), and let H
denote the resulting topological group. By Theorem 1.2, the identity map Homeo0(M)→
H is a continuous isomorphism of Polish groups. Pettis’ theorem (see 9.10 in [12]) which,
in the form that we need it, is essentially a Baire category theorem argument, now implies
that this map is actually open, hence a homeomorphism.

5.2 Extension problems

In [5], Epstein and Markovic show that there is no extension from the group of quasi-
symmetric homeomorphisms of the circle to the group of quasi-conformal homeomorphisms
of the disc. In other words, there is no homomorphism φ : QS(S1)→ QC(D2) such that
the restriction of φ(g) to the boundary of D2 agrees with g, for each g ∈ QS(S1). A major
step in their proof is to show that any such map would have to be continuous. Motivated
by this, they ask whether any extension of Homeo0(S1) to Homeo0(D2) is necessarily
continuous. Theorem 1.2 immediately gives a positive answer, as well as a positive answer
to the more general problem of extensions Homeo(∂M)→ Homeo(M).

A less trivial application of automatic continuity is to the problem of extending germs
of homeomorphisms. Let G be the group of orientation preserving homeomorphisms of
Rn that fix the origin, and G+(Rn, 0) the group of germs of elements of G at 0. There
is a natural (quotient) map G → G+(Rn, 0). Navas has asked whether this map has a
group-theoretic section, in the following sense.

Question 5.1 (Navas, see also Remark 1.1.3 in [7]). Does there exist a homomorphism

φ : G+(Rn, 0)→ G such that the composition G+(Rn, 0)→ G
φ→ G+(Rn, 0) is the identity?

Automatic continuity implies a stronger result.

Proposition 5.2. There is no faithful homomorphism G+(Rn, 0) → Homeo0(Rn). In
fact, there is no nontrivial homomorphism from G+(Rn, 0) to any separable group.

The proof only uses Rosendal and Solecki’s theorem on automatic continuity of
Homeo0(I), where I is a compact interval [19], and the fact that G+(Rn, 0) is simple,
which is proved in the Appendix with Frédéric Le Roux. The idea for this use of automatic
continuity of Homeo0(I) was communicated to me by C. Rosendal.

Proof. As above, let G be the group of orientation preserving homeomorphisms of Rn
that fix the origin, and I the interval [0, 1]. There is an embedding i : Homeo0(I)→ G
given by a “radial action on the unit ball.” Precisely, put radial coordinates on the unit
ball Bn ⊂ Rn as {r~v | r ∈ [0, 1], ~v ∈ Sn−1} and define

i(f)(x) =

{
f(r)~v if x = r~v ∈ Bn

x otherwise

The image of i(Homeo0(I)) under the quotient map to G+(Rn, 0) is abstractly isomorphic
to the group of germs at 0 of orientation-preserving homeomorphisms of [0, 1].
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Now suppose that φ : G+(Rn, 0)→ H is a homomorphism to a separable topological
group. Consider the induced homomorphism

Φ : Homeo0(I)
i→ G→ G+(Rn, 0)

φ→ H

By automatic continuity for Homeo0(I), Φ is continuous. However, the kernel of Φ contains
the subgroup of homeomorphisms that restrict to the identity in a neighborhood of 0 ∈ I,
and this is a dense subgroup. It follows that Φ is trivial, and hence φ is not injective.
Since Theorem A.1 states that G+(Rn, 0) is simple, φ must be trivial.

As an immediate consequence, we have the following.

Corollary 5.3. G+(Rn, 0) does not admit a separable group topology.

Navas has also asked the following.

Question 5.4. Suppose that there is an isomorphism G+(Rn, 0) → G+(Rm, 0). Is it
necessarily the case that m = n?

This question was intended to mirror the theorem of Whittaker [23], which states that
if M and N are compact manifolds, and φ : Homeo0(M)→ Homeo0(N) is an isomorphism,
then M = N . Whittaker’s result is essentially topological (in fact, even without Whittaker,
our Theorem 1.2 implies that φ must be a homeomorphism!). Corollary 5.3 implies that
the corresponding question for germs of homeomorphisms is fundamentally an algebraic
question, and so likely requires completely different techniques. As pointed out by the
referee a good strategy might be to look at finite subgroups of G+(Rn, 0). This certainly
provides a positive answer to the question in very low dimensions.

We conclude with a related open question that has recently attracted attention.

Question 5.5. Suppose that φ : Homeo0(M) → Homeo0(N) is a nontrivial (hence
injective) homomorphism. Is it necessarily true that dim(M) ≤ dim(N)? If dim(M) =
dim(N), must φ come from an embedding or a covering map?

In [9], an analogous result is proved for groups of smooth diffeomorphisms of manifolds.
The first step in the proof is to show that such a homomorphism is necessarily continuous.
Our theorem 1.2 gives this in the case of Homeo0(M); this should represent significant
progress towards the solution of Question 5.5.

5.3 Algebraic nonsmoothing

Recall that in the introduction we defined the regularity of an abstract group G to
be the largest r such that there exists a manifold M and a nontrivial homomorphism
G→ Diffr(M). The following question appears to be wide open.

Question 5.6. Give examples of groups of regularity r, for any given r. Are there
examples which are finitely or compactly generated groups?

In [16], Navas discusses the related question of finitely generated subgroups of
Homeo0(S1) that do not act by C1 diffeomorphisms on S1. However, his work re-
lies heavily on the 1-dimensional setting, and it is conceivable that his examples could
act by diffeomorphisms on a manifold of higher dimension, hence still be algebraically
C1–smoothable, in the sense defined in the introduction.

We give the first partial answer to Question 5.6 now, showing that Homeo0(M) has
regularity 0.
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Proof. Suppose for contradiction that φ : Homeo0(M)→ Diff1(N) were such a homomor-
phism. The topology on Diff1(N) is separable; a neighborhood basis of the identity can
be specified by first covering N by finitely many charts so the ε0-ball about any point is
contained in some element of the cover, and then taking open sets

Un := {f ∈ Diff1(N) : d(f(x), x) < 1/n and ‖Df(x)‖ < 1/n for all x ∈ N}

with 1/n < ε0. Here the “norm” ‖Df(x)‖ is the minimum of the operator norms
of Df̄(x) − I, where f̄ is any coordinate representation of f with respect to a chart
containing both x and f(x). (See e.g. [8, Chapter 2] for more details.) This topology is
also completely metrizable, one can even take the sets Un to be the metric balls of radius
1/n about the identity. We let d1 denote such a metric.

Fix ε < ε0. Since φ is continuous by Theorem 1.2, there exists a neighborhood U of the
identity in Homeo0(M) such that d1(φ(f), id) ≤ ε for all f ∈ U . In particular, if B ⊂M
is an embedded ball of sufficiently small diameter, and GB the group of homeomorphisms
of M supported on B, then φ(GB) ⊂ U . Let B be such a ball, and B′ ⊂ B a smaller ball
with closure contained in B.

Let g ∈ Homeo0(M) be a contraction of B′ supported on B. By this, we mean that

i) g(B′) ⊂ B′

ii)
∞⋂
n=1

gn(B′) = {p} for some point p ∈ B′

iii) supp(g) ⊂ B.

Note also that supp(gn) ⊂ B, so gn ∈ U , and hence d1(gn, id) ≤ ε, for all n ∈ Z.
Let h be supported in GB′ . Since Homeo0(M) is simple, φ(h) is nontrivial, so there

exists x0 ∈ N with d(φ(h)(x0), x0) = δ > 0. Since g contracts B′, as n→∞, gnhg−n → id
in Homeo0(M). By continuity, φ(gn)φ(h)φ(g−n)→ id in Homeo(N). In particular, if n is
large enough, then

sup
y∈N

dN
(
φ(gnhg−n)(y), y

)
< δ/ε.

In particular, taking y = φ(gn)(x0), this means that dN (φ(gnh)(x0), φ(gn)(x0)) < δ/ε.
Consider a geodesic segment γ on N from φ(gnh)(x0) to φ(gn)(x0). Then φ(g−n)(γ) is a
C1 path from φ(h)(x0) to x0, so has length greater than δ. It follows that φ(g−n) expands
the length of a differentiable path by a factor of more than ε. But this contradicts the
fact that φ(g−n) ∈ U , so supx∈M ‖Dgn(x)‖ < ε.

We conjecture that an analogous result holds for diffeomorphism groups.

Conjecture 5.7. The group Diffr(M) has regularity r.

A good first step would be to prove automatic continuity for such groups.

Question 5.8. Does Diffr0(M) have the automatic continuity property? If so, is Diffr0(M)
Steinhaus?
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A Appendix: Structure of groups of germs

Frédéric Le Roux and Kathryn Mann

Theorem A.1. G+(Rn, 0) is uniformly simple in the following strong sense: given any
nontrivial g ∈ G+(Rn, 0), every element g′ ∈ G+(Rn, 0) can be written as a product of 8
conjugates of g.

The argument that we give here applies to the case n ≥ 2. A short argument for
simplicity of G+(R, 0) can be found in Proposition 4 of [15] (using a very similar strategy
of proof to the one here).

Notation/Conventions A.2. Let G denote the group of orientation preserving homeo-
morphisms of Rn fixing 0. Recall that G+(Rn, 0) is the quotient of G by the subgroup of
homeomorphisms that restrict to the identity in a neighborhood of 0. By convention, a ball
containing 0 is an image B of the standard closed unit ball under a global homeomorphism
of Rn, with 0 in the interior of B. We use the symbol Å to denote the interior of a set A.

Definition A.3. An element g ∈ G is a local contraction if there exists a ball B containing
0 such that g(B) ⊂ B̊ and such that

⋂
n
gn(B) = {0}

Lemma A.4. The germs of any two local contractions are conjugate.

Proof. We show that any local contraction has germ conjugate to that of x 7→ 1
2x. The

proof uses the annulus theorem [13] [17].
Let g be a local contraction. After conjugacy, we may assume that the ball B

contracted by g is the standard unit ball. By the annulus theorem, there exists a
homeomorphism h1 : B \ g(B̊) → B \ 1

2 B̊ that is the identity on ∂B, and, inductively

hn :
(
gn−1(B) \ gn(B̊

)
→
(

2−n+1B \ 2−nB̊
)

agreeing with hn−1 on ∂(gn−1(B)). Define

a homeomorphism

h(x) =

{
hn(x) if x ∈ gn−1(B) \ gn(B̊)
x otherwise.

Then hgh−1(2−n+1B) = 2−nB. Let ĝ = hgh−1. Now we build another conjugacy to
“straighten” ĝ to the standard contraction x 7→ 1

2x.
The restriction of ĝ to ∂B, considered as a homeomorphism ∂B = Sn−1 → ∂( 12 (B)) =

Sn−1, is isotopic to the identity (this is a consequence of Kirby’s stable homeomorphism
theorem); let gt, t ∈ [1/2, 1] be such an isotopy with g1 = ĝ and g1/2 = id. Identify B with

{rs | r ∈ [0, 1], s ∈ Sn−1}, and define a foliation of B \ 1
2B, transverse to the boundary,

with 1-dimensional leaves of the form

Ls := {rgr(s) | r ∈ [1/2, 1]}.

This extends naturally to a leafwise ĝ-invariant foliation on B \ 0 with leaves equal to⋃
n≥0 ĝ

n(Ls); we will produce a conjugacy that straightens these to radii of B. Note that
each x ∈ B \ {0} can be written uniquely as ĝn(rgr(s)) for some n ∈ N, r ∈ (1/2, 1], and

s ∈ Sn−1. Define ĥ by

ĥ(x) =

{
2−nrs if x = ĝn(rgr(s)
x otherwise.
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Then ĥĝĥ−1 preserves each radius of B, and is conjugate to x 7→ 1
2x on each radius. A

continuous choice of conjugacies on radii gives a conjugacy of ĝ with a homeomorphism
agreeing with x 7→ 1

2x on B.

Definition A.5. An element g ∈ G contracts a basis of balls if there exist nested balls
B1 ⊃ B2 ⊃ ... containing 0 with

⋂
nBn = {0}, and such that g(Bn) ⊂ B̊n for all n.

Lemma A.6. Let g ∈ G have nontrivial germ at 0. Then there exists a ∈ G such that
aga−1g contracts a basis of balls.

Proof. In this proof, we let B(r, x) denote the ball of radius r about x.
Let g have nontrivial germ at 0. Then in any neighborhood U1 of 0, there exists x

such that g(x) 6= x. This means we can take a ball B containing 0 and x, but not g−1(x),
in particular x /∈ gB. Then we can find a ball B′ with g(B) ⊂ B̊′ and such that the
pair B,B′ is homeomorphic to the pair B(2,−z), B(2, z), where z = (1, 0, 0, ...) ∈ Rn (see
Figure 1). We may also take B′ and B to be contained in U1.

x

g(x)

B

g(B)

B′
a1

U2

g

Figure 1: The balls B, g(B), and B′

Let h : Rn → Rn be a homeomorphism with h(B) = B(2,−z) and h(B′) = B(2, z).
There is a homeomorphism r, supported on a small neighborhood of B(2,−z) ∪B(2, z),
with r(B(2, z)) = B(2,−z) and r(B(2,−z)) = B(2, z), and such that r fixes pointwise
a small ball around 0. So hrh−1 exchanges B and B′, and hrh−1 is the identity on a
ball U2 containing 0. We may also take hrh−1 to be supported on U1. Let a1 = hrh−1.
Note that since gB ⊂ B̊′ and a1 exchanges B and B′ we get a1ga

−1
1 B′ ⊂ B̊. Then

a1ga
−1
1 g(B) ⊂ a1ga−11 B̊′ ⊂ B̊.

Repeating the construction above, using U2 in place of U1, we can find h2 supported
on U2, fixing a smaller neighborhood U3 of 0, and so that h2gh

−1
2 g(B2) ⊂ B̊2 for some

B2 ⊂ U2. In the same manner, inductively define an, with supp(an) ⊂ Un \ Un−1, and
such that anga

−1
n g(Bn) ⊂ B̊n for some ball Bn ⊂ Un containing 0. We may also choose

Bn so that
⋂
Bn = {0} (e.g. at each stage, ensure that Bn is contained in a ball of radius

2−n).
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Define a homeomorphism

a(x) =

{
an(x) if x ∈ Un \ Un−1
x otherwise

Then hgh−1(Bn) ⊂ (̊Bn) for all n.

Lemma A.7. Let f ∈ G. If f contracts a basis of balls, then there exists b such that
bfb−1f is a local contraction.

Proof. We return to the notation of Lemma A.4, where rB denotes the ball of radius
r centered at 0 Using the annulus theorem as in the first part of the proof of Lemma
A.4, we may conjugate f to a homeomorphism that contracts the nested balls B ⊃ 1

2B ⊃
1
4B ⊃ ... Abusing notation, let f denote this new map. Choose rn ∈ (2−n−1, 2−n) so that
f(2−nB) ⊂ rnB. Let λ : [0,∞) → [0,∞) be a homeomorphism such that λ(2−n) = rn,
and λ(rn) = 2−n−1. Let b : Rn → Rn be defined by

b(x) = λ(‖x‖) x

‖x‖
.

Then
bfb−1f(2−nB) ⊂ bfb−1rnB = bf2−nB ⊂ brnB = 2−n−1B

so bfb−1f is a local contraction.

Combining Lemmas A.4, A.6 and A.7 immediately gives the following.

Corollary A.8. Let g ∈ G have nontrivial germ. Then any local contraction can be
written as the product of 4 conjugates of g.

We can now easily finish the proof of Theorem A.1.

Proof of Theorem A.1. Let g and g′ be elements of G, and assume g has nontrivial germ.
We first construct a local contraction c such that cg′ is also a local contraction. Let
rn = max{‖x‖ : x ∈ g′(2−nB)}, and let c be a local contraction mapping rnB to tnB
where tn < min{rn, 2−n−1} – it is easy to construct such a map that preserves each ray
through 0. Then cg′(2−nB) ⊂ 2−n−1(B), so cg′ is a local contraction.

By Corollary A.8, cg′ can be written as a product of 4 conjugates of g. Since g−1

also has nontrivial germ, Corollary A.8 implies that c can be written as a product of 4
conjugates of g−1. Thus, g′ = c−1cg′ can be written as a product of 8 conjugates of g.
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