Large scale geometry of homeomorphism groups

Kathryn Mann UC Berkeley

work joint with C. Rosendal, UIC

Motivating problem:

Give an example of a torsion-free, finitely generated group G, and a manifold M, (not S^1 or \mathbb{R}) such that $G \nsubseteq \operatorname{Homeo}(M)$.

Open problem:

Give an example of a torsion-free, finitely generated group G, and a manifold M, (not S^1 or \mathbb{R}) such that $G \nsubseteq \operatorname{Homeo}(M)$.

In particular,

we know no torsion free f.g. groups that do not act faithfully on Σ_g ... or even D^2 .

Known results

Theorem (Witte Morris [Mo11])

 $G \subset SL(n,\mathbb{Z})$ finite index, $n \geq 3$.

Any homomorphism $\phi: G \to \mathsf{Homeo}(S^1)$ has finite image.

• Analogous questions for $\operatorname{Diff}_{\mu}(M)$ "Zimmer program" (see [Fi11])

Theorem (Franks-Handel [FH06])

 $G \subset SL(n,\mathbb{Z})$ finite index, $n \geq 3$. $\Sigma = surface$.

Any homomorphism $\phi: G \to \mathsf{Diff}_{\mu}(\Sigma)$ has finite image

F–H main technique: distorted subgroups.

Distortion in finitely generated groups

Definition

 $G \subset H$ is distorted if $G \hookrightarrow H$ is not a Q.I. embedding.

Special case:

$$\langle g \rangle \subset H$$
 is distorted if $\lim_{n \to \infty} \frac{\|g^n\|}{n} = 0$

$$\|\cdot\| = \text{word norm on } H$$

Distortion in Homeo(Σ) (not finitely generated)

Definition

 $G \subset \mathsf{Homeo}(M)$ (or $\mathsf{Diff}(M)$) is distorted...

if there exists a finitely generated subgroup $H \subset \text{Homeo}(M)$, and $G \subset H$ is distorted.

Idea used in [BIP08], [CF06], [Hu15], [Mil14], [Po02],...

Question

Can we make sense of distortion (word norm, large scale geometry) for non finitely-generated groups?

GGT for non f.g. groups

 ${\it G}$ locally compact, compactly generated

define word norm w.r.t. any compact generating set... ([CH15])

Exercise: $\mathbb{Z}^n \hookrightarrow \mathbb{R}^n$ is Q.I. embedded

G not locally compact ??

Example: word norms on \mathbb{R}^{∞}

S, U small neighborhoods of id (generating sets) can have $\| \cdot \|_{S}$ not Q.I. to $\| \cdot \|_{U}$

A new framework

Replace compact (generating set) with... "universally bounded"

Definition ([Ro14])

A set $S \subset G$ has *property (OB)* in G if it has finite diameter in any left-invariant metric on G

OB = Orbites Bornées. Equivalent: $G \curvearrowright X$ isometric action $\Rightarrow S \cdot x$ bounded. Topological groups: require *compatible* left-inv. metric, continuous action

Example: *S* compact.

A new framework

Replace compact (generating set) with... "universally bounded"

Definition ([Ro14])

A set $S \subset G$ has *property (OB)* in G if it has finite diameter in any left-invariant metric on G

Definition

G is (OB)-generated if \exists generating set S with property (OB)

Exercise: S, U are (OB) generating sets $\Rightarrow \| \|_{S} \sim \| \|_{U}$

...can do GGT!

Nice for topological groups

Assume G separable, metrizable.

E.g. Homeo(M), Diff(M), \mathbb{R}^{∞} , Banach spaces, Lie groups,...

Proposition ([Ro14])

If G is (OB)-generated by open set U, then:

- ∃ compatible left-invariant metric Q.I. to word metric "compatibility"
- For any compatible left-invariant d, have $d(x, id) < K ||x||_U + C$ "maximality"

Proof: First part using Birkhoff–Kakutani metrization, second part exercise. See [Ro14]

Examples

Groups that are (OB) generated by open sets:

- separable Banach space, +
- various automorphism groups, e.g. affine isometries of ℓ^p , Aut(T),... [Ro14b]
- \bullet Diff_{μ} with L^p metrics... ([BS13], [BK13]...)

Theorem (M-, Rosendal)

• Homeo(M), for any compact manifold M.

Moreover, the large-scale geometry of $Homeo_0(M)$ reflects the topology of M, and the dynamics of group actions on M.

Distortion revisited

New (old) definition:

 $G \subset \mathsf{Homeo}(M)$ is distorted if $G \hookrightarrow \mathsf{Homeo}(M)$ is not a Q.I. embedding

Proposition

 $G \subset \mathsf{Homeo}(M)$ finitely generated, distorted $\Leftrightarrow \exists \ f.g. \ H \ with \ G \subset H \ distorted.$

... but the distortion function may be different? (open Q.)

Results:

Topology of $M \leftrightarrow \text{large scale geometry of } \text{Homeo}_0(M)$

- Homeo $(S^n) \sim *$ (Proved by Calegari–Freedman, de Cornulier [CF06])
- $M \neq S^1$ and $\pi_1(M)$ infinite \Rightarrow Homeo₀(M) very big contains Q.I. embedded $C([0,1],\mathbb{R})$
- Theorem:
 - "Geometry of $\pi_1(M)$ visible in lifts of homeomorphisms to \widetilde{M} " related to bounded cohomology, Q.l.'s and central extensions $1 \to \pi_1(M) \to \text{group of lifts} \to \text{Homeo}_0(M) \to 1$
- Have natural word metric, the fragmentation norm

Much unknown: e.g. $\pi_1(M)$ finite $\stackrel{?}{\Rightarrow}$ Homeo₀(M) bounded?

Fragmentation

Theorem (Edwards–Kirby)

Given $\{B_1, B_2, ..., B_k\}$ open cover of M. There is a neighborhood U of id in $\mathsf{Homeo}(M)$ such that $g \in U \Rightarrow g = g_1 \circ ... \circ g_k$. g_i pointwise fixes $M \setminus B_i$.

Definition

The fragmentation norm is $\| \|_U$ Well defined up to Q.I.

Key in proof!

Previous notion (Q.I. equivalent):

$$||g|| = min\{m \mid g = g_1 \circ ... \circ g_m, g_i \text{ fixes } M \setminus B_{k_i}\}$$

Related notion: conjugation-invariant fragmentation norm [BIP08]

Lifting to M

Each g_i from fragmentation has canonical lift to \widetilde{M} Can bound word length in $Homeo_0(M)$ by looking at \widetilde{M} ...

A revised question

Question

Give examples of finitely generated groups G that don't Q.I. embed in $\mathsf{Homeo}_0(M)$.

Give interesting examples of groups G that do Q.I. embed into $Homeo_0(M)$.

Theorem (evidence of something interesting...)

 $G = \mathbb{R} \rtimes \mathbb{Z} \subset \mathsf{Homeo}_0(A)$,

but G has no continuous Q.I. embedding into $Homeo_0(A)$.

More generally...

Problem

Generalize GGT to (non locally-compact) OB–generated groups.

Are there hyperbolic groups? an interesting theory of ends? growth? ... ??

Some references (not a complete list!)

[Ro14b]

[BK13]	M. Brandenbursky, J. Kedra, <i>Quasi-isometric embeddings into diffeomorphism groups</i> , Groups, Geometry and Dynamics, 7.3 (2013), 523–534.
[BS13]	M. Brandenbursky, E. Shelukhin, On the large-scale geometry of the L^p -metric on the symplectomorphism group of the two-sphere, Preprint arxiv:1304.7037
[BIP08]	D. Burago D, S. Ivanov, L. Polterovich, <i>Conjugation-invariant norms on groups of geometric origin</i> Adv. Studies in Pure Math. 52, Groups of Diffeomorphisms (2008) 221–250
[CF06]	D. Calegari and M. Freedman, <i>Distortion in transformation groups</i> , With an appendix by Yves de Cornulier. Geom. Topol. 10 (2006) 267–293.
[CH15]	Y. Cornulier, P. de la Harpe, Metric geometry of locally compact groups. arXiv:1403.3796 [math.GR]
[Fi11]	D. Fisher, Groups acting on manifolds: around the Zimmer program. In Geometry, Rigidity, and Group Actions, Chicago Lectures in Math. 57 (2011).
[FH06]	J. Franks, M. Handel, <i>Distortion Elements in Group actions on surfaces</i> . Duke Math. J. 131 (2006), 441–468.
[Hu15]	S. Hurtado, <i>Continuity of discrete homomorphisms of diffeomorphism groups</i> , Geometry & Topology 19 (2015) 2117–2154.
[MR15]	K. Mann, C. Rosendal, Large-scale geometry of homeomorphism groups Preprint.
[Mil14]	E. Militon, <i>Distortion elements for surface homeomorphisms</i> Geometry & Topology 18 (2014) 521–614.
[Mo11]	D. Witte Morris, $D.$ $W.$ Morris: Can lattices in $SL(n, R)$ act on the circle? In Geometry, Rigidity and Group Actions, Univ. Chicago press, Chicago (2011).
[Po02]	L. Polterovich, <i>Growth of maps, distortion in groups and symplectic geometry</i> Invent. Math. 150 (2002) 655–686.
[Ro14]	C. Rosendal, Large scale geometry of metrisable groups Preprint. arXiv:1403.3106[math.GR]

C. Rosendal, Large scale geometry of automorphism groups Preprint arXiv:1403.3107[math.GR]