Realizing maps of braid groups by surface diffeomorphisms

Kathryn Mann

Let $\operatorname{Diff}(\mathbb{D}, \mathbf{z}_n)$ denote the group of smooth diffeomorphisms of the 2-dimensional disc that fix a neighborhood of $\partial \mathbb{D}$ and preserve a set \mathbf{z}_n consisting of n points. Let $\operatorname{Diff}_0(\mathbb{D}, \mathbf{z}_n)$ denote the identity component of this group. Then the mapping class group $\operatorname{Diff}(\mathbb{D}, \mathbf{z}_n)/\operatorname{Diff}_0(\mathbb{D}, \mathbf{z}_n)$ is isomorphic to Br_n , the braid group on n strands.

There is a natural "geometric" map $\psi: \operatorname{Br}_{2g+2} \to \operatorname{Mod}_{g,2}$ induced by lifting mapping classes to a double cover $\Sigma_{g,2}$ of the disc \mathbb{D} ramified over the points of \mathbf{z}_{2g+2} . One description of this map is as follows: Each $f \in \operatorname{Diff}(\mathbb{D}, \mathbf{z}_{2g+2})$ has a canonical lift to a homeomorphism of the cover $\Sigma_{g,2}$; this is the lift that fixes both boundary components pointwise. This gives an injective map $\Psi: \operatorname{Diff}(\mathbb{D}, \mathbf{z}_{2g+2}) \to \operatorname{Homeo}(\Sigma_{g,2}, \partial \Sigma_{g,2})$, and the induced map on the quotient of these groups by their identity components is exactly ψ .

Nariman [2] asks if these lifts can be made smooth: is there a map $Diff(\mathbb{D}, \mathbf{z}_{2g+2}) \to Diff(\Sigma_{g,2}, \partial \Sigma_{g,2})$ that induces ψ on mapping class groups? Note that the construction above is inherently non-smooth: unless the derivative of $f \in Diff(\mathbb{D}, \mathbf{z}_{2g+2})$ at each point $z \in \mathbf{z}$ is a scalar, the lift of f to a homeomorphism of the branched cover will not be differentiable at the branch points. Furthermore, there is some (weak) evidence to suggest that no "smoothing" is possible. For instance, Salter-Tshishiku [4] give obstructions to realizing braid groups by diffeomorphisms, so ψ cannot be obtained by a map that factors through Br_{2g+2} . Work of Hurtado [1] also implies that such a map ψ should essentially be continuous, and that its restriction to the subgroup $Diff_c(\mathbb{D}, \mathbf{z}_{2g+2})$ of diffeomorphisms fixing a neighborhood of \mathbf{z} (which we know to be nontrivial by [4]) must be obtained by embedding copies of covers of the open, punctured disc into $\Sigma_{g,2}$. This suggests, at least vaguely, that ψ would have to be obtained by branching the punctured disc over \mathbf{z} , an inherently non-smooth construction.

In [2], Nariman shows – perhaps surprisingly, given the above – that there is no cohomological obstruction to realizing ψ by a map on diffeomorphism groups. Here we confirm Nariman's result and give an alternative proof, via an explicit construction of a realization.

Theorem 1.1. There is a continuous homomorphism $\mathrm{Diff}(\mathbb{D},\mathbf{z}_{2g+2})\to\mathrm{Diff}(\Sigma_{g,2},\partial\Sigma_{g,2})$ that induces the geometric homomorphism $\psi:\mathrm{Br}_{2g+2}\to\mathrm{Mod}_{g,2}$ on mapping class groups.

Simpler versions of the constructions used in the proof of Theorem 1.1 can be used to give a smooth version of Thurston's realization of Br₃ by homeomorphisms of the disc. This answers a question asked by B. Tshishiku.

Theorem 1.2. There is a homomorphism $Br_3 \to Diff(\mathbb{D}, \mathbf{z}_3)$ such its the composition with the quotient map to $Diff(\mathbb{D}, \mathbf{z}_3)/Diff_0(\mathbb{D}, \mathbf{z}_3)$ is the identity homomorphism of Br_3 .

2 Proof of Theorem 1.1

Our strategy is to first build a map ϕ : Diff(\mathbb{D}, \mathbf{z}_n) \to Diff(\mathbb{D}, \mathbf{z}_n). This map will have image in a subgroup that acts on a given neighborhood of \mathbf{z}_n by rigid motions of \mathbb{D} , will also induce the identity map $\operatorname{Br}_n \to \operatorname{Br}_n$. Building this map is the bulk of the construction. Given such a map ϕ , the diffeomorphisms in its image can then be lifted to diffeomorphisms of a cover branched over \mathbf{z}_n as described above.

We will use the following two familiar constructions in the proof. These are sketched here for the readers convenience.

Construction 2.1 (Blow-up). Let $P = \{p_1, p_2, ..., p_n\}$ be a finite set of points in a manifold S. The blowup of S at P is a manifold \hat{S} and map $\Phi : \hat{S} \to S$ that is a diffeomorphism away from $\Phi^{-1}(P)$, and such that each $\Phi^{-1}(p_i)$ a sphere of dimension $\dim(M) - 1$. The manifold \hat{S} can be given a smooth structure identifying $\Phi^{-1}(p_i)$ with the unit tangent sphere at p_i . If G is a group of smooth diffeomorphisms preserving P, there is a natural, injective homomorphism $\iota : G \to \text{Diff}(\hat{S})$ such that $\Phi_* \circ \iota$ is the identity. If $g(p_i) = p_j$, then $\Phi(g)$ restricts to a map from $\Phi^{-1}(p_i)$ to $\Phi^{-1}(p_j)$ agreeing with the induced map on the space of tangent directions.

Construction 2.2 (Smoothing actions glued on a codimension 1 submanifold). Let G be a group acting by smooth diffeomorphisms on manifolds S_1 and S_2 . Let X_1 and X_2 be diffeomorphic connected components of ∂S_1 and ∂S_2 respectively, and let S be the manifold obtained by gluing S_1 and S_2 by a diffeomorphism $X_1 \to X_2$. If, for each $g \in G$, the action of g on X_1 agrees with that on X_2 under the identification used in the gluing, then there is an obvious induced action of G on S by homeomorphisms. However, this is conjugate to an action by smooth diffeomorphisms on S. The conjugacy can be obtained by a map $f: S \to S$ which is the identity outside a tubular neighborhood of the glued boundary components, and in the tubular neighborhood (identified with $X \times [-1, 1]$, with the glued boundary components at $X \times \{0\}$) is locally a very strong contraction at 0. Details are worked out in [3] using the local contraction $(x, y) \mapsto (x, e^{\frac{-1}{e^{-1/|y|}}})$.

Now we proceed with the main part of the proof.

Construction of ϕ : Diff(\mathbb{D}, \mathbf{z}_n) \to Diff(\mathbb{D}, \mathbf{z}_n). First, apply Construction 2.1 to blow up \mathbb{D} at the set \mathbf{z}_n . The new surface obtained (call it D_0) has n+1 boundary components, one corresponding to the original boundary ∂ of the disc, and the others corresponding to the blown up points.

Enumerate $\mathbf{z}_n = \{z_1, z_2, ..., z_n\}$ and for i = 1, 2, ..., n, let D_i be a blow-up of \mathbb{D} at $\{z_i\}$. Glue each D_i to D_0 along the blow-up of z_i , using the identity map on the space of tangent directions at z_i . The result is an (n + 1)-holed sphere. Now embed this (n + 1)-holed sphere into \mathbb{D} with the boundary component ∂ mapping to $\partial \mathbb{D}$. The result is pictured in Figure 1; boundary components of the D_i are labeled by their images under the map from the blow-up construction.

Let $C_1, C_2, ... C_n$ be the connected components of the complement of the image of the embedding (shown in white on the figure). We may arrange the embedding so that each C_i is a round disc of radius ϵ , centered around the marked point z_i on the original disc

Figure 1: Gluing copies of \mathbb{D} blown up at one point of \mathbf{z}_3 into a copy of \mathbb{D} blown up at \mathbf{z}_3

 \mathbb{D} (shown as midpoints of the white regions of the figure). Constructions 2.1 gives a natural homomorphism from $\mathrm{Diff}(\mathbb{D},\mathbf{z}_n)$ to $\mathrm{Diff}(D_i)$. These actions of $\mathrm{Diff}(\mathbb{D},\mathbf{z}_n)$ on the various D_i for i=0,1,...,n agree on their glued boundary components, so Construction 2.2 produces a homomorphism from $\mathrm{Diff}(\mathbb{D},\mathbf{z}_n)$ to the diffeomorphisms of the n+1 holed sphere that was obtained by gluing the D_i together. We identify this surface with the image of its embedding in \mathbb{D} . Since elements of $\mathrm{Diff}(\mathbb{D},\mathbf{z}_n)$ fix a neighborhood of $\partial \mathbb{D}$ pointwise, we may also arrange the embedding so that this action permutes the boundaries of the complementary discs C_i by rigid translations. Thus, the action naturally extends to an action on \mathbb{D} by diffeomorphisms, permuting the discs C_i by translations. In particular, the set of midpoints of the C_i is preserved, so this action is by elements of $\mathrm{Diff}(\mathbb{D},\mathbf{z}_n)$. We let $\phi: \mathrm{Diff}(\mathbb{D},\mathbf{z}_n) \to \mathrm{Diff}(\mathbb{D},\mathbf{z}_n)$ denote this action.

Finally we check that ϕ induces the identity map on the quotient $\operatorname{Br}_n = \operatorname{Diff}(\mathbb{D}, \mathbf{z}_n)/\operatorname{Diff}_0(\mathbb{D}, \mathbf{z}_n)$. By design of our blow-up, gluing, and embedding, if $f(z_i) = z_j$, then $\phi(f)$ maps D_i to D_j , hence maps C_i to C_j , and its center point z_i to z_j .

Lifting to a branched cover. Let n = 2g + 2. As in the introduction, we have an injective map $\Psi : \text{Diff}(\mathbb{D}, \mathbf{z}_n) \to \text{Homeo}(\Sigma_{g,2}, \partial \Sigma_{g,2})$. Consider the map $\Psi \circ \phi : \text{Diff}(\mathbb{D}, \mathbf{z}_n) \to \text{Homeo}(\Sigma_{g,2}, \partial \Sigma_{g,2})$, which agrees with Ψ on mapping class groups. Each diffeomorphism in the image of ϕ has trivial (i.e. constant $\equiv id$) derivative in a neighborhood of each $z \in \mathbf{z}_n$, so its image under Ψ is smooth everywhere. Thus, $\Psi \circ \phi$ gives the desired map $\text{Diff}(\mathbb{D}, \mathbf{z}_n) \to \text{Diff}(\Sigma_{g,2}, \partial \Sigma_{g,2})$.

3 Proof of Theorem 1.2

This section describes a similar blow-up and smoothing trick to turn Thurston's construction from [5] into a realization of Br₃ by diffeomorphisms. Since this construction is unpublished (and relatively quick), we give a self-contained exposition here. Most of the material is well-known.

A standard presentation for Br₃ is $\langle a, b : a^2 = b^3 \rangle$. (To see the relation with mapping classes of $(\mathbb{D}, \mathbf{z}_3)$, take a to be the standard generator supported on a neighborhood of $\{z_1\} \cup \{z_3\}$, swapping these points, and take b the standard generator cyclically permuting

the z_i .) The group $SL(2, \mathbb{Z})$ is isomorphic to the quotient of Br_3 by the normal closure of $\{a^4, b^6\}$, taking $a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$.

Let $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. The linear action of $\mathrm{SL}(2,\mathbb{Z})$ on \mathbb{R}^2 descends to an action by diffeomorphisms on \mathbb{T}^2 . Taking $[0,1)^2$ as a fundamental domain, this action fixes (0,0) and preserves the set $\{(0,1/2),(1/2,1/2),(1/2,0)\}$. The order two automorphism $x\mapsto -x$ of \mathbb{R}^2 defines a quotient map $\pi:\mathbb{T}^2\to S^2\cong\mathbb{T}^2/(x=-x)$ that is a degree 2 branched cover, with branching locus the four points $P:=\{(0,0),(0,1/2),(1/2,1/2),(1/2,0)\}\subset\mathbb{T}^2$. Considering S^2 topologically as $\{(x,y)\in\mathbb{R}^{\geq 0}\times\mathbb{R}^{\geq 0}:x+y\leq 1\}$ with appropriate edge identifications, we may also identify P with the set of images of the branch points under π . The action of $\mathrm{SL}(2,\mathbb{Z})$ descends to an action on S^2 by homeomorphisms that are smooth away from P. We now modify this using blow-ups to get a smooth action on the disc.

Use Construction 2.1 to blow up \mathbb{T}^2 at P. The automorphism $x \mapsto -x$ extends to the blow-up, and its quotient under the automorphism is a 4-holed sphere \hat{S} , with a map $\Phi: \hat{S} \to S^2$. Away from P, Φ is a diffeomorphism, and for $p \in P$, $\Phi^{-1}(p)$ is naturally identified with the *projectiviezed* tangent space of \mathbb{T}^2 at p. The action of $\mathrm{SL}(2,\mathbb{Z})$ on the blow-up of \mathbb{T}^2 descends naturally to this quotient. It is no longer faithful, but factors through a faithful action of $\mathrm{PSL}(2,\mathbb{Z}) \cong \langle a,b:a^2=b^3=1\rangle$.

Since (0,0) is fixed by $\mathrm{SL}(2,\mathbb{Z})$, one boundary component of \hat{S} is preserved by this action, while the others are permuted transitively. Attach an annulus $S^1 \times [0,1]$ to the preserved boundary component of \hat{S} along $S^1 \times \{0\}$, and embed this new surface into \mathbb{D} , with the attached annulus mapping onto a collar neighborhood of $\partial \mathbb{D}$. As in the proof of Theorem 1.1, let C_1, C_2 and C_3 denote the connected components of the complement of the image of this embedding; with C_1 corresponding to the blow-up of (0,1/2), C_2 to (1/2,1/2), and C_3 to (1/2,0). We may arrange the embedding so that the boundaries $\partial(C_i)$ are round circles of the same radius, and with $z_i \in C_i$ as the center. Since the action on the boundary components of \hat{S} agrees with the action of $\mathrm{SL}(2,\mathbb{Z})$ on the projectivized tangent spaces at points of P; we may also arrange this embedding so that, after making suitable identifications $\xi_i : \mathbb{R}P^1 \xrightarrow{\sim} C_i$, such that $\xi_i \xi_i^{-1}$ is a rigid translation, we have that

$$a|_{C_2} = id$$

 $a: C_1 \to C_3$ agrees with $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathrm{PSL}(2, \mathbb{R})$, (under our identification)
 $b(C_i) = C_{i+1}$ (permuting cyclically), and
 $b: C_i \to C_{i+1}$ agrees with $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \in \mathrm{PSL}(2, \mathbb{R})$.

We now describe how to extend the action of $SL(2,\mathbb{Z})$ (which we think of as a non-faithful action of Br_3) on \hat{S} , to an action of Br_3 on \mathbb{D} by elements of $Diff(\mathbb{D}, \mathbf{z}_3)$.

First we extend over the annulus $S^1 \times [0,1]$ which we have embedded as a collar neighborhood of $\partial \mathbb{D}$. Under suitable parameterization, a acts on $S^1 \times \{1\}$ (the preserved boundary component of \hat{S}) by a standard order two rotation, and b by an order 3 projectively linear map. Let b_t , $0 \le t \le 1/2$ be a smooth path of conjugates of b through PSL(2, \mathbb{R}) such that $b_0 = b$, and $b_{1/2} \in SO(2)$. Now extend this to a smooth path through SO(2) for $1/2 \le t \le 1$, with $b_{1-\epsilon} = \operatorname{id}$ for all small ϵ . Let a_t be a smooth path in SO(2) from $a_0 = a$ to $a_1 = \operatorname{id}$ such that $a_t^2 = b_t^3$ for all t. This gives an extension of the action to a smooth action on the annulus that is identity in a neighborhood of the boundary.

A similar construction allows us to extend over the regions C_i . Fix smooth collar neighborhoods of ∂C_i in C_i parametrized by $\partial C_i \times [0,1]$. Applying analogous isotopies to the action of a and b as described in (1) gives an extension of the action to the collar neighborhood such that the action of a and b on $C_i \times \{1\}$ is by rigid translations in \mathbb{R}^2 . This can then be extended by rigid translations over the complement of these neighborhoods in the C_i . The result is an action by diffeomorphisms of a and b on \mathbb{D}^2 , preserving $\{z_1, z_2, z_3\}$ and such that $a(z_1) = z_3$, and $b(z_i) = z_{i+1}$. Moreover, it is easily verified that the mapping classes of a and b agree with the standard generators of Br₃, as required.

References

- [1] S. Hurtado, Continuity of discrete homomorphisms of diffeomorphism groups, Geometry & Topology 19 (2015) 2117–2154.
- [2] S. Nariman, Braid groups and discrete diffeomorphisms of the punctured disc. Preprint. arXiv:1511.09369 (2016)
- [3] K. Parkhe, Smooth gluing of group actions and applications. Proc. AMS 143.1 (2015), 203–212.
- [4] N. Salter, B. Tshishiku On the non-realizability of braid groups by diffeomorphisms, Bull. Lond. Math. Soc. 48 no. 3, (2016), 457–471.
- [5] W. Thurston, Realizing the braid group by homeomorphisms. http://mathoverflow.net/questions/55555/realizing-braid-group-by-homeomorphisms, February 2011.