Realizing maps of braid groups by surface diffeomorphisms

Kathryn Mann

Let $\text{Diff}(\mathbb{D}, z_n)$ denote the group of smooth diffeomorphisms of the 2-dimensional disc that fix a neighborhood of $\partial \mathbb{D}$ and preserve a set z_n consisting of n points. Let $\text{Diff}_0(\mathbb{D}, z_n)$ denote the identity component of this group. Then the mapping class group $\text{Diff}(\mathbb{D}, z_n)/\text{Diff}_0(\mathbb{D}, z_n)$ is isomorphic to Br_n, the braid group on n strands.

There is a natural “geometric” map $\psi: \text{Br}_{2g+2} \to \text{Mod}_{g,2}$ induced by lifting mapping classes to a double cover $\Sigma_{g,2}$ of the disc \mathbb{D} ramified over the points of z_{2g+2}. One description of this map is as follows: Each $f \in \text{Diff}(\mathbb{D}, z_{2g+2})$ has a canonical lift to a homeomorphism of the cover $\Sigma_{g,2}$; this is the lift that fixes both boundary components pointwise. This gives an injective map $\Psi: \text{Diff}(\mathbb{D}, z_{2g+2}) \to \text{Homeo}(\Sigma_{g,2}, \partial \Sigma_{g,2})$, and the induced map on the quotient of these groups by their identity components is exactly ψ.

Nariman [2] asks if these lifts can be made smooth: is there a map $\text{Diff}(\mathbb{D}, z_{2g+2}) \to \text{Diff}(\Sigma_{g,2}, \partial \Sigma_{g,2})$ that induces ψ on mapping class groups? Note that the construction above is inherently non-smooth: unless the derivative of $f \in \text{Diff}(\mathbb{D}, z_{2g+2})$ at each point $z \in \mathbb{D}$ is a scalar, the lift of f to a homeomorphism of the branched cover will not be differentiable at the branch points. Furthermore, there is some (weak) evidence to suggest that no “smoothing” is possible. For instance, Salter–Tshishiku [4] give obstructions to realizing braid groups by diffeomorphisms, so ψ cannot be obtained by a map that factors through Br_{2g+2}. Work of Hurtado [1] also implies that such a map ψ should essentially be continuous, and that its restriction to the subgroup $\text{Diff}_c(\mathbb{D}, z_{2g+2})$ of diffeomorphisms fixing a neighborhood of z (which we know to be nontrivial by [4]) must be obtained by embedding copies of covers of the open, punctured disc into $\Sigma_{g,2}$. This suggests, at least vaguely, that ψ would have to be obtained by branching the punctured disc over z, an inherently non-smooth construction.

In [2], Nariman shows – perhaps surprisingly, given the above – that there is no cohomological obstruction to realizing ψ by a map on diffeomorphism groups. Here we confirm Nariman’s result and give an alternative proof, via an explicit construction of a realization.

Theorem 1.1. There is a continuous homomorphism $\text{Diff}(\mathbb{D}, z_{2g+2}) \to \text{Diff}(\Sigma_{g,2}, \partial \Sigma_{g,2})$ that induces the geometric homomorphism $\psi: \text{Br}_{2g+2} \to \text{Mod}_{g,2}$ on mapping class groups.

Simpler versions of the constructions used in the proof of Theorem 1.1 can be used to give a smooth version of Thurston’s realization of Br_3 by homeomorphisms of the disc. This answers a question asked by B. Tshishiku.

Theorem 1.2. There is a homomorphism $\text{Br}_3 \to \text{Diff}(\mathbb{D}, z_3)$ such its the composition with the quotient map to $\text{Diff}(\mathbb{D}, z_3)/\text{Diff}_0(\mathbb{D}, z_3)$ is the identity homomorphism of Br_3.

1
2 Proof of Theorem 1.1

Our strategy is to first build a map \(\phi : \text{Diff}(\mathbb{D}, z_n) \to \text{Diff}(\mathbb{D}, z_n) \). This map will have image in a subgroup that acts on a given neighborhood of \(z_n \) by rigid motions of \(\mathbb{D} \), will also induce the identity map \(\text{Br}_n \to \text{Br}_n \). Building this map is the bulk of the construction. Given such a map \(\phi \), the diffeomorphisms in its image can then be lifted to \textit{diffeomorphisms} of a cover branched over \(z_n \) as described above.

We will use the following two familiar constructions in the proof. These are sketched here for the readers convenience.

Construction 2.1 (Blow-up). Let \(P = \{p_1, p_2, ..., p_n\} \) be a finite set of points in a manifold \(S \). The \textit{blowup of \(S \) at \(P \)} is a manifold \(\hat{S} \) and map \(\Phi : \hat{S} \to S \) that is a diffeomorphism away from \(\Phi^{-1}(P) \), and such that each \(\Phi^{-1}(p_i) \) is a sphere of dimension \(\dim(M) - 1 \). The manifold \(\hat{S} \) can be given a smooth structure identifying \(\Phi^{-1}(p_i) \) with the unit tangent sphere at \(p_i \). If \(G \) is a group of smooth diffeomorphisms preserving \(P \), there is a natural, injective homomorphism \(\iota : G \to \text{Diff}(\hat{S}) \) such that \(\Phi \circ \iota \) is the identity. If \(g(p_i) = p_j \), then \(\Phi(g) \) restricts to a map from \(\Phi^{-1}(p_i) \) to \(\Phi^{-1}(p_j) \) agreeing with the induced map on the space of tangent directions.

Construction 2.2 (Smoothing actions glued on a codimension 1 submanifold). Let \(G \) be a group acting by smooth diffeomorphisms on manifolds \(S_1 \) and \(S_2 \). Let \(X_1 \) and \(X_2 \) be diffeomorphic connected components of \(\partial S_1 \) and \(\partial S_2 \) respectively, and let \(S \) be the manifold obtained by gluing \(S_1 \) and \(S_2 \) by a diffeomorphism \(X_1 \to X_2 \). If, for each \(g \in G \), the action of \(g \) on \(X_1 \) agrees with that on \(X_2 \) under the identification used in the gluing, then there is an obvious induced action of \(G \) on \(S \) by homeomorphisms. However, this is \textit{conjugate} to an action by \textit{smooth diffeomorphisms} on \(S \). The conjugacy can be obtained by a map \(f : S \to S \) which is the identity outside a tubular neighborhood of the glued boundary components, and in the tubular neighborhood (identified with \(X \times [-1, 1] \), with the glued boundary components at \(X \times \{0\} \)) is locally a very strong contraction at \(0 \).

Details are worked out in [3] using the local contraction \((x, y) \mapsto (x, e^{-\frac{1}{1+y}}) \).

Now we proceed with the main part of the proof.

Construction of \(\phi : \text{Diff}(\mathbb{D}, z_n) \to \text{Diff}(\mathbb{D}, z_n) \). First, apply Construction 2.1 to blow up \(\mathbb{D} \) at the set \(z_n \). The new surface obtained (call it \(D_0 \)) has \(n + 1 \) boundary components, one corresponding to the original boundary \(\partial \) of the disc, and the others corresponding to the blown up points.

Enumerate \(z_n = \{z_1, z_2, ..., z_n\} \) and for \(i = 1, 2, ..., n \), let \(D_i \) be a blow-up of \(\mathbb{D} \) at \(\{z_i\} \). Glue each \(D_i \) to \(D_0 \) along the blow-up of \(z_i \), using the identity map on the space of tangent directions at \(z_i \). The result is an \((n + 1) \)-holed sphere. Now embed this \((n + 1) \)-holed sphere into \(\mathbb{D} \) with the boundary component \(\partial \) mapping to \(\partial \mathbb{D} \). The result is pictured in Figure 1; boundary components of the \(D_i \) are labeled by their images under the map from the blow-up construction.

Let \(C_1, C_2, ..., C_n \) be the connected components of the complement of the image of the embedding (shown in white on the figure). We may arrange the embedding so that each \(C_i \) is a round disc of radius \(\epsilon \), centered around the marked point \(z_i \) on the original disc.
Figure 1: Gluing copies of D blown up at one point of z_3 into a copy of D blown up at z_3

D (shown as midpoints of the white regions of the figure). Constructions 2.1 gives a natural homomorphism from $\text{Diff}(D, z_n)$ to $\text{Diff}(D_i)$. These actions of $\text{Diff}(D, z_n)$ on the various D_i for $i = 0, 1, ..., n$ agree on their glued boundary components, so Construction 2.2 produces a homomorphism from $\text{Diff}(D, z_n)$ to the diffeomorphisms of the $n + 1$ holed sphere that was obtained by gluing the D_i together. We identify this surface with the image of its embedding in D. Since elements of $\text{Diff}(D, z_n)$ fix a neighborhood of ∂D pointwise, we may also arrange the embedding so that this action permutes the boundaries of the complementary discs C_i by rigid translations. Thus, the action naturally extends to an action on D by diffeomorphisms, permuting the discs C_i by translations. In particular, the set of midpoints of the C_i is preserved, so this action is by elements of $\text{Diff}(D, z_n)$. We let $\phi : \text{Diff}(D, z_n) \to \text{Diff}(D, z_n)$ denote this action.

Finally we check that ϕ induces the identity map on the quotient $\text{Br}_n = \text{Diff}(D, z_n)/\text{Diff}_0(D, z_n)$.

Lifting to a branched cover. Let $n = 2g + 2$. As in the introduction, we have an injective map $\Psi : \text{Diff}(D, z_n) \to \text{Homeo}(\Sigma_{g,2}, \partial \Sigma_{g,2})$. Consider the map $\Psi \circ \phi : \text{Diff}(D, z_n) \to \text{Homeo}(\Sigma_{g,2}, \partial \Sigma_{g,2})$, which agrees with Ψ on mapping class groups. Each diffeomorphism in the image of ϕ has trivial (i.e. constant $\equiv \text{id}$) derivative in a neighborhood of each $z \in z_n$, so its image under Ψ is smooth everywhere. Thus, $\Psi \circ \phi$ gives the desired map $\text{Diff}(D, z_n) \to \text{Diff}(\Sigma_{g,2}, \partial \Sigma_{g,2})$.

3 Proof of Theorem 1.2

This section describes a similar blow-up and smoothing trick to turn Thurston’s construction from [5] into a realization of Br_3 by diffeomorphisms. Since this construction is unpublished (and relatively quick), we give a self-contained exposition here. Most of the material is well-known.

A standard presentation for Br_3 is $\langle a, b : a^2 = b^3 \rangle$. (To see the relation with mapping classes of (D, z_3), take a to be the standard generator supported on a neighborhood of $\{z_1\} \cup \{z_3\}$, swapping these points, and take b the standard generator cyclically permuting
the z_i.) The group $\text{SL}(2, \mathbb{Z})$ is isomorphic to the quotient of Br_3 by the normal closure of $\{a^2, b^0\}$, taking $a = \left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right)$ and $b = \left(\begin{smallmatrix} 0 & -1 \\ 1 & 1 \end{smallmatrix} \right)$.

Let $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. The linear action of $\text{SL}(2, \mathbb{Z})$ on \mathbb{R}^2 descends to an action by diffeomorphisms on T^2. Taking $[0, 1)^2$ as a fundamental domain, this action fixes $(0, 0)$ and preserves the set $\{(0, 1/2), (1/2, 1/2), (1/2, 0)\}$. The order two automorphism $x \mapsto -x$ of \mathbb{R}^2 defines a quotient map $\pi : T^2 \to S^2 \cong T^2/(x = -x)$ that is a degree 2 branched cover, with branching loci the four points $P := \{(0, 0), (0, 1/2), (1/2, 1/2), (1/2, 0)\} \subset T^2$.

Considering S^2 topologically as $\{(x, y) \in \mathbb{R}^2 \times \mathbb{R}^2 : x + y \leq 1\}$ with appropriate edge identifications, we may also identify P with the set of images of the branch points under π. The action of $\text{SL}(2, \mathbb{Z})$ descends to an action on S^2 by homeomorphisms that are smooth away from P. We now modify this using blow-ups to get a smooth action on the disc.

Use Construction 2.1 to blow up T^2 at P. The automorphism $x \mapsto -x$ extends to the blow-up, and its quotient under the automorphism is a 4-holed sphere \hat{S}, with a map $\Phi : \hat{S} \to S^2$. Away from P, Φ is a diffeomorphism, and for $p \in P$, $\Phi^{-1}(p)$ is naturally identified with the projectivized tangent space of T^2 at p. The action of $\text{SL}(2, \mathbb{Z})$ on the blow-up of T^2 descends naturally to this quotient. It is no longer faithful, but factors through a faithful action of $\text{PSL}(2, \mathbb{Z}) \cong \langle a, b : a^2 = b^3 = 1 \rangle$.

Since $(0, 0)$ is fixed by $\text{SL}(2, \mathbb{Z})$, one boundary component of \hat{S} is preserved by this action, while the others are permuted transitively. Attach an annulus $S^1 \times [0, 1]$ to the preserved boundary component of \hat{S} along $S^1 \times \{0\}$, and embed this new surface into \mathbb{D}, with the attached annulus mapping onto a collar neighborhood of $\partial \mathbb{D}$. As in the proof of Theorem 1.1, let C_1, C_2 and C_3 denote the connected components of the complement of the image of this embedding; with C_1 corresponding to the blow-up of $(0, 1/2)$, C_2 to $(1/2, 1/2)$, and C_3 to $(1/2, 0)$. We may arrange the embedding so that the boundaries $\partial(C_i)$ are round circles of the same radius, and with $z_i \in C_i$ as the center. Since the action on the boundary components of \hat{S} agrees with the action of $\text{SL}(2, \mathbb{Z})$ on the projectivized tangent spaces at points of P; we may also arrange this embedding so that, after making suitable identifications $\xi_i : \mathbb{R}P^1 \sim \sim C_i$, such that ξ_i^{-1} is a rigid translation, we have that

$$a|_{C_2} = \text{id}$$

$$a : C_1 \to C_3 \text{ agrees with } \left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right) \in \text{PSL}(2, \mathbb{R}), \text{ (under our identification)}$$

$$b(C_i) = C_{i+1} \text{ (permuting cyclically), and}$$

$$b : C_i \to C_{i+1} \text{ agrees with } \left(\begin{smallmatrix} 0 & -1 \\ 1 & 1 \end{smallmatrix} \right) \in \text{PSL}(2, \mathbb{R}).$$

We now describe how to extend the action of $\text{SL}(2, \mathbb{Z})$ (which we think of as a non-faithful action of Br_3) on \hat{S}, to an action of Br_3 on \mathbb{D} by elements of $\text{Diff}(\mathbb{D}, z_3)$.

First we extend over the annulus $S^1 \times [0, 1]$ which we have embedded as a collar neighborhood of $\partial \mathbb{D}$. Under suitable parameterization, a acts on $S^1 \times \{1\}$ (the preserved boundary component of \hat{S}) by a standard order two rotation, and b by an order 3 projectively linear map. Let $b_t, 0 \leq t \leq 1/2$ be a smooth path of conjugates of b through $\text{PSL}(2, \mathbb{R})$ such that $b_0 = b$, and $b_{1/2} \in \text{SO}(2)$. Now extend this to a smooth path through $\text{SO}(2)$ for $1/2 \leq t \leq 1$, with $b_{1/2}^t = \text{id}$ for all small ϵ. Let a_t be a smooth path in $\text{SO}(2)$ from $a_0 = a$ to $a_1 = \text{id}$ such that $a_t^2 = b_t^3$ for all t. This gives an extension of the action to a smooth action on the annulus that is identity in a neighborhood of the boundary.
A similar construction allows us to extend over the regions C_i. Fix smooth collar neighborhoods of ∂C_i in C_i parametrized by $\partial C_i \times [0,1]$. Applying analogous isotopies to the action of a and b as described in (1) gives an extension of the action to the collar neighborhood such that the action of a and b on $C_i \times \{1\}$ is by rigid translations in \mathbb{R}^2. This can then be extended by rigid translations over the complement of these neighborhoods in the C_i. The result is an action by diffeomorphisms of a and b on \mathbb{D}^2, preserving $\{z_1, z_2, z_3\}$ and such that $a(z_1) = z_3$, and $b(z_i) = z_{i+1}$. Moreover, it is easily verified that the mapping classes of a and b agree with the standard generators of Br_3, as required.

References

