Reading corresponding to lectures:
Tuesday 11/17 DF 8.3
Thursday 11/19 DF 9.2, beginning of 9.4
Tuesday 11/24 DF 9.3, 9.4

Problems to hand in:
1. Do the following problems from DF section 8.3: 5a, for 2 and \(\sqrt{-n}\) only. (hint: use the “norm” \(N\))

2. Show that \(\mathbb{Z}[\sqrt{-6}]\) is not a UFD.
 (hint: you can use problem 1, or find an example similar to the example for \(\mathbb{Z}[\sqrt{-5}]\))

3. (a) Let \(F\) be a field. Show that \(x^2 = 1\) has only two solutions in \(F\).
 (hint: \(F[x]\) is a Euclidean domain, so a UFD. Factor the polynomial \(x^2 - 1 = 0\) into irreducibles to understand solutions of \(x^2 - 1 = 0\))

 (b) Let \(p\) be prime. For which integers \(n\) is \(n\) equal to its own multiplicative inverse mod \(p\)?
 (use part a and that \(\mathbb{Z}/p\mathbb{Z}\) is a field)

 (c) We will use the result of part b) above to prove the following lemma used in class:
 Fermat’s lemma: If \(p\) is a prime integer, and \(p = 4a + 1\), then \(p\) divides \((2a)!^2 + 1\)

 Outline: First show that
 \[(2a)!^2 \equiv 1 \cdot 2 \cdot ... \cdot 2a \cdot ((2a + 1) \cdot -(2a + 2)) ... -(p - 1) \pmod{p}\]
 Now cancel things with their multiplicative inverses (justifying this using part b) to conclude
 that \((2a)!^2 \equiv -1 \pmod{p}\)
 and say why this proves the lemma.

4. Do the following problems from DF section 9.2: 1, 2 (these should feel familiar!), 8.

5. In this question you’ll prove that irreducible polynomials in \(\mathbb{R}[x]\) must be degree 1 or 2. This is probably a familiar fact to you (every polynomial of degree at least 3 can be factored), but now you will prove it.
 (a) Define a function \(\phi : \mathbb{C} \rightarrow \mathbb{C}\) by \(\phi(a + bi) = a - bi\). (this is just the usual complex conjugation). Show that \(\phi\) is a ring homomorphism.

 (b) Suppose \(f \in \mathbb{R}[x]\) (i.e. \(f\) is a polynomial with real coefficients) and suppose \(\alpha\) is a complex number with \(f(\alpha) = 0\)
 Show that \(f(\phi(\alpha)) = 0\), using the fact that \(\phi\) is a ring homomorphism.

 (c) It is known that any \(f \in \mathbb{C}[x]\) with degree > 0 can be factored as a product of degree 1 polynomials in \(\mathbb{C}[x]\).
 Use this fact and your work above to show that if \(f \in \mathbb{R}[x]\) is irreducible then \(f\) has degree 1 or 2.
 (hint: suppose \(\text{degree}(f) > 1\) and look at a root \(\alpha \in \mathbb{C}\) such that \(f(\alpha) = 0\). Apply part b) above to conclude \(\phi(\alpha)\) is also a root.
 Let \(g(x) = (x - \alpha)(x - \phi(\alpha))\) and show that \(g\) divides \(f\) in \(\mathbb{R}[x]\), by
 using the Euclidean algorithm in \(\mathbb{R}[x]\) – if there is a remainder term \(r(x)\), what is \(r(\alpha)\)? – Conclude either \(f\) is reducible or \(f\) is a constant multiple of \(g\)