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Abstract

This mini-course is an introduction to some central themes in geometric group
theory and their modern offshoots. One of the earliest and most influential results in the
area (in fact a precursor to the field of geometric group theory) is Mostow’s celebrated
strong rigidity theorem. This course begins with an “annotated” proof of Mostow’s
theorem, using the framework of the proof as a means to introduce foundational ideas in
large-scale geometry. The later lectures will touch on recent developments and still-open
questions in rigidity theory that can be framed as natural offshoots of Mostow.

Introduction

Most people think of Gromov as the founder of geometric group theory. In a series of highly
influential papers in the 80s and early 90s – perhaps most notably Hyperbolic groups (1987)1

– he popularized the idea that abstract groups can be thought of as geometric objects and
profitably studied with geometric techniques.

However, there were many precursors to Gromov’s ideas. A particularly important one is
the notion of rigidity of groups (in particular of lattices in semisimple groups) by Mostow,
Margulis, and others, in the 60’s and 70’s. “Rigidity” is a broad term; it means that some
structure – usually geometric, topological, or dynamical in nature – is determined by just a
small part of it. A good (and early) example is Mostow’s strong rigidity theorem:

Theorem 0.1 (Mostow rigidity). Let M and N be closed manifolds of dimension n ≥ 3,
each equipped with a metric of constant curvature -1. If π1(M) ∼= π1(N), then M and N
are isometric.2

In other words, the fundamental group completely determines the geometry of such a
manifold: in principle, one should be able to read off all geometric invariants of M (diameter,
volume, length of longest closed geodesic, etc.) from a presentation for π1(M).

One can also rephrase Mostow’s result purely in terms of Lie groups:

Theorem 0.2 (Mostow rigidity, algebraic version). Let Γ1 and Γ2 be discrete subgroups of
SO(n, 1), n ≥ 3, so that SO(n, 1)/Γi is compact. Then any isomorphism Γ1

∼= Γ2 is realized
by conjugation in SO(n, 1).

〈SOn aside〉Aside remark 0.3. These are related by the following SO(n, 1) ⊂ SL(n+ 1,R) is the group
of determinant 1 matrices preserving the symmetric form x1y1 + ...+ xnyn − xn+1yn+1 on
Rn+1. One model for hyperbolic space Hn is one of the sheets of the hyperboloid {x ∈ Rn+1 :
〈x, x〉 = −1} with the metric induced from the symmetric form. Hence, SO(n, 1) = isom(Hn).

1note the title! “Hyperbolic” refers to a space of constant negative curvature - in what sense can this be
applied to a discrete,algebraic object?

2This is not the most general possible statement of this theorem

1



Given a hyperbolic manifold M , we identify its universal cover with Hn, whence π1 is a
discrete group of isometries.

Both the result and the techniques in Mostow’s proof were highly influential. The first
phrasing hints at “hyperbolicity” as a source of rigidity, and led to the study of hyperbolic
groups (a la Gromov), while the second phrasing is the precursor to the study of rigidity of
lattices in Lie groups in a much broader sense and setting.

My goal in these lectures is to introduce you to some fundamental concepts of geometric
group theory through the proof of Mostow’s theorem. Along the way, I’ll comment on
modern offshoots and perspectives.

1 GGT basics: Groups as geometric objects

One of the earliest instances of viewing a group as a geometric object is the work of Dehn
(circa 1910) on finitely generated groups, and specifically the word problem. He makes the
following definition.

Definition 1.1. Let G be any group, and S a symmetric generating set. The word norm
on G is ‖g‖S := min{k : g = s1s2...sk, si ∈ S}, and word metric dS(f, g) := ‖f−1g‖S
One easily checks that ‖ · ‖S is indeed a norm, and dS a metric, moreover, dS is invariant
under left-multiplication in G.

〈bilip prop〉Proposition 1.2 (bilipschitz equivalence). If S1, S2 are two finite, symmetric generating
sets for a discrete group G, or compact symmetric generating sets for a locally compact
topological group G Then ∃K > 1 such that

1/KdS1
(g, h) ≤ ds2(g, h) ≤ KdS1

(g, h)

holds for all g, h ∈ G.

Aside remark 1.3. This holds in an even more general context, where compact is replaced
with “coarsely bounded”. This perspective, and a number of applications, comes from very
recent work of C. Rosendal.

I gave the (easy) proof of Prop. 1.2 in the discrete case. Note that the locally compact
case is not a totally trivial generalization. One argues as follows: We want to find K so that
S2 ⊂ Sk

1 . Now
⋃

n(S1)n = G, so the Baire cateogry theorem (we’re assuming G is Hausdorff)
implies that some (S1)n has nonempty interior. Thus, (S1)2n contains a neighborhood of the
identity. If s ∈ S2 has length l in S1, then s ∈ int(S2n+l

1 ). This shows that
⋃

l>0 int(S2n+l
1 )

is an open cover of S2, so has a finite subcover.
Note that finiteness (or more generally compactness) is a necessary condition. Taking

S = G gives the group diameter 1.

Exercise 1.4. The (additive) group Q with topology induced from R is not locally compact,
but is compactly generated. Can you find two compact generating sets with non bilipschitz-
equivalent word norms?

Exercise 1.5. What groups can be distinguished from each other by their geometry? Show
that Z is not quasi-isometric to Z2. In fact, it is true (but much harder) that Zm is QI to
Zn iff m = n. However, the free group on 2 generators, F2 is quasi-isometric to Fn for any
n ≥ 2. Can you prove this?

The important takeaway from the discussion above is

Corollary 1.6. Metric properties invariant under bilipschitz maps3 are intrinsic to a (finitely

3we’ll see some examples shortly
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or compactly generated locally compact) group G. In other words, groups have a well-defined
“large-scale” geometry.

It turns out that bilipschitz equivalence is not exactly the right notion of large-scale
geometry. For example, consider Rn (as an additive group) with the standard Euclidean
unit ball as generating set S. Then dS(x, y) is always within 1 of the standard Euclidean
distance between x and y, so we’s like to view this discrete metric dS as essentially the same
as the usual Euclidean one. However, the two metrics are not bilipschitz equivalent since
dS(x, y) ≥ 1 for all x 6= y.

Definition 1.7. Let X, dX and Y, dY be metric spaces. A map f : X → Y is a (K,C)-
quasi-isometric embedding if

1
K dX(x, z)− C ≤ dY (f(x), f(z)) ≤ KdX(x, z) + C

holds for all x, z ∈ X. It is a (K,C)-quasi-isometry if additionally for any y ∈ Y there exists
x ∈ X with dY (f(x), y) ≤ C. If such a quasi-isometry exists, we say that X is quasi-isometric

to Y , or X
QI∼ Y .

Exercise 1.8. Check that “quasi-isometric to” is an equivalence relation. Large-scale
geometry refers to geometric properties that are well defined on QI classes.

This leaves with some basic questions:

1. To what extent does the large-scale geometry of a group determine or reflect its
algebraic structure?

2. If G is quasi-Isometric to a metric space X, what geometric properties of (or structures
on) X translate to interesting algebraic properties of G?

3. Given G, what spaces can we build that are QI equivalent to G? More generally, we
are interested in geometric spaces X on which G acts in a way that preserves some
geometry.

The Cayley graph gives a straightforward answer to question 3.

Definition 1.9. The Cayley graph Γ(G,S) of a group G with generating set S is a graph
with vertex set G and edges between each g and sg for s ∈ S.

We have G
QI∼ Γ(G,S); in fact, more generally:

Lemma 1.10 (Milnor-Schwarz4 Lemma). Let X be a proper (closed balls are compact)
geodesic metric space. Let Γ act cocompactly and properly discontinuously on X.5 Then Γ is
finitely generated and, for any x0 ∈ X the map Γ→ X, given by γ 7→ γx0 is a quasi-isometry.

Exercise 1.11. (Easy corollary of Milnor-Schwarz) If Λ ⊆ Γ is a finite index subgroup of a
finitely generated group then Λ is quasi-isometric to Γ.

Another important corollary is the following – it is our first hint at where Mostow rigidity
starts, with a relationship between the geometry of π1(M) and the geometry of the universal
cover.

Corollary 1.12. Let M be a compact Riemannian manifold and let M̃ be the universal

cover with metric lifted from M . Then π1(M)
QI∼ M̃

4also spelled Svarc
5Properly discontinuously means that for all compact K ⊆ X, the set{γ ∈ Γ|γK ∩K 6= ∅} is finite
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Milnor’s original motivation for the Lemma above was to study the growth6 of fundamental
groups by comparing this to growth of (volume) of balls in universal covers. In particular,
this lemma lets him do some standard Riemannian geometry and show that the fundamental
group of a compact Riemannian manifold with negative sectional curvature has exponential
growth.

Here are some properties invariant under quasi-isometry:

• Finite presentability
• Growth rate
• Number of ends*
• Hyperbolicity – our next topic.

* The number of ends of a topological space X is the number of components of X \K
for all large enough compact K (if finite, this number eventually stabilizes). The number of
ends of a group is the number of ends of its Cayley graph (exercise: why is this well defined?)
It is a remarkable theorem of Stallings that every group has either 1, 2, or infinitely many
ends.

〈qi rig rem〉
Remark 1.13. The best one can hope for is that the quasi-isometry type of a group allows
one to recover, not just some of its algebraic features, but (essentially) the group itself. Since
passing to finite index subgroups and quotients by finite groups do not affect the QI type of
a group, the best determination one can hope for is the following:

Say G1 and G2 are “virtually isomorphic” if there are finite index subgroups Hi ⊂ Gi

and finite normal subgroups Fi ⊂ Hi so that H1/F1
∼= H2/F2.

Remarkably, “QI implies virtually isomorphic” is true within several classes of groups,
most classes being related to lattices (discrete cocompact or co-finite volume) subgroups of
Lie groups.

2 Hyperbolicity

Recall that Mostow’s theorem wants to turn an isomorphism φ : π1(M)→ π1(N) into an
isometry. The outline of the proof is:

1. Use φ to build a map f : Hn = M̃ → Hn = Ñ , equivariant with respect to π1, and
show that f is a quasi-isometry.

2. Use “hyperbolicity” to show that f extends to a homeomorphism of a suitable com-
pactification Hn → Hn that is topologically a closed ball.

3. Study the properties of the restriction of f to the boundary ∂Hn. In particular, show
that it is quasi-conformal

4. Using some analysis, show that the boundary map is in fact conformal, this will imply
that f was homotopic to an isometry.

There are many alternative proofs of Mostow, but they all share steps 1 and 2 (and most
of 3). In order to do steps 1 and 2, we some basic hyperbolic geometry. A good reference is
Thurston’s book [11].

6meaning number of elements of G that can be written as words of length < r in a fixed generating set S,
as a function of r; one looks as the equivalence class of this function under a suitable notion of equivalence
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Hyperbolic geometry basics

Hyperbolic space Hn is the unique simply connected homogeneous space with constant
negative (sectional) curvature −1. Here are two models.

Definition 2.1 (Poincaré Disc Model of Hn). Hyperbolic space is the open unit radius disc
Dn ⊂ Rn with the metric

ds2(x) =
4

(1− ‖x‖2)2
dx2

where dx is the usual Euclidean metric.

Geodesics are circular arcs that meet the boundary at right angles. Note that the metric
is Euclidean at the center, but rescaled drastically towards the outside.

The ball model comes from a stereographic projection of the hyperboloid (from Aside 0.3)
onto the hyperplane x0 = 0. For another model, we can apply an inversion in a circle (with
centre a boundary point of the unit ball above, and radius 2) to take the ball conformally to
the upper half of Rn.

Definition 2.2 (Upper half space model of Hn). Hyperbolic space is the set {(x1, ...xn) :
xn > 0} ⊂ Rn with the metric

ds2(x) = 1
x2
n
dx2

where dx is the usual Euclidean metric.

Geodeiscs here are semi-circles meeting the boundary and vertical straight lines. Note
what geodesic triangles look like.

The following generalization of hyperbolicity to arbitrary (non-Riemannian) metric spaces,
including cayley graphs of groups, is due to Gromov.

〈delta def〉Definition 2.3. A metric space X is δ-hyperbolic if, for any geodesic triangle, each side of
the triangle lies in the union of the δ-neighborhoods of the other two sides.

Exercise 2.4. (An exercise strictly in hyperbolic trigonometry). Check that this indeed
holds for geodesic triangles in H2, and therefore in Hn.

One shows (we will later) that δ-hyperbolicity is a QI invariant (although the constant δ
may change), hence can declare a group to be hyperbolic if its Cayley graph is a δ-hyperbolic
space for some δ.

Step 1 of Mostow:

Since M and N are K(π, 1) spaces, there is a homotopy equivalence M
f

�
g
N so that f

induces φ on π1. Since every map is homotopic to a C1 one, we can assume f has continuous
derivatives. Since M is compact, f is Lipschitz.

Lift f to a map f̃ : M̃ → Ñ . This will also be Lipschitz with the same Lipschitz constant
as f . We can apply the same argument to g and lift g̃.

Now g ◦ f is homotopic to identity on M by some homotopy moving points distance < C.
Provided we have chosen appropriate lifts of f and g, we may take a lift of this homotopy
and get a homotopy from g̃ ◦ f̃ to identity, moving all points distance < C. Let K be the
larger of the Lipschitz constants for f and g. Now for x, y ∈ M̃ we have

Kd(x, y) ≥ d(f̃(x), f̃(y)) ≥ 1/Kd(g̃f̃(x), g̃f̃(y)) ≥ 1/K(d(x, y)− 2C)

where the first inequalities are Lipschitz, and the last from the homotopy. This shows that f̃
is a K, 2C/K QI.
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Step 2 of Mostow: Boundary maps

The Poincaré disc model suggests that we should compactify Hn with the unit sphere. We
do this by declaring boundary points to be equivalence classes of geodesic rays.

Definition 2.5. Let X, dX be a geodesic metric space and γ1, γ2 : [0,∞)→ X geodesic rays.
We say γ1 ∼ γ2 if there exists K so that dX(γ1(t), γ2(t)) < K for all t. (Equivalently, for t
sufficiently large).

Exercise 2.6. Describe equivalence classes of geodesic rays in the Euclidean space Rn.

In Hn, one checks that two geodesic rays are equivalent iff their images limit onto the
same boundary point in the disc (or, equivalently upper half plane) model. Moreover, rays
that are not equivalent (bounded distance apart) diverge exponentially.

Aside remark 2.7. More generally, in any δ-hyperbolic space, if two geodesic rays eventually
separate by more than 2δ and are in the same end, then they diverge at an exponential rate.
One can even use this to characterize hyperbolicity.

Definition 2.8. The boundary of a δ-hyperbolic space is the set of equivalence classes of
geodesic rays.

There is a natural way to topologize this space. In our case (for Hn) the situation is
simple: we may take representatives of geodesic rays based at the origin in the disc model,
and say two endpoints are close if the rays have small angle at 0. Generally, one uses what
is called the Gromov product to measure how close two rays are to each other.

The next step of the proof of Mostow is to show that f induces a map on the boundary.
However, f does not send geodesics to geodesics. However, it does something almost as good.

Definition 2.9. Let X be a metric space. A quasi-geodesic in X is a QI embedded copy of
the real line. A (K,C) quasi-geodesic segment is a (K,C) QI embedded copy of a segment
of R.

In hyperbolic spaces, quasi-geodeiscs are uniformly close to geodesics. Precisely, we have:

Lemma 2.10 (Mostow–Morse Lemma). For all δ ≥ 0,K ≥ 1, C ≥ 0, there exists R =
R(δ,K,C) with the following property: If X is a δ-hyperbolic metric space, γ : [a, b]→ X a
(K,C)-quasi-geodesic, and [γ(a), γ(b)] is any geodesic from γ(a) to γ(b), then [γ(a), γ(b)] is
Hausdorff distance at most R from γ.

Note that this is very far from true in Euclidean space!

Exercise 2.11. Find a QI from R2 to R2 that takes the positive real axis to a logarithmic
spiral.

We gave the proof of Mostow–Morse in the case X = Hn. A proof for general δ-hyperbolic
metric spaces can be found in Theorem 9.38 of [6] . (Their proof uses convergence of rescaled
metric spaces – if you are familiar with asymptotic cones, this is that kind of machinery.)

A straightforward, but important consequence of Mostow–Morse is the following.

Corollary 2.12. Hyperbolicity in the sense of Definition 2.3 is a QI invariant: if X is
δ-hyperbolic and Y quasi-isometric to X, then Y is δ′-hyperbolic for some δ′.

Corollary 2.13 (Local to global principle). If γ is locally a quasi-geodesic in a δ-hyperbolic
space, then γ is globally a quasi-geodesic. Precisely, there exists M (depending on K,C, δ)
such that, if every length M segment of γ is a (K,C) quasi-geodesic, then γ is a (K ′, C ′)
quasi-geodesic.
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For our immediate purposes, the most important corollary is the following.

〈boundary cor〉Corollary 2.14 (Boundary map exists). Let f̃ : X → Y be a quasi-isometry between
δ-hyperbolic spaces (for example X = Y = Hn). For each geodesic ray γ : [0,∞)→ X, there
is a unique equivalence class of hyperbolic ray [α] in Y that is a bounded distance from f ◦ γ.
Moreover, [α] depends only on the equivalence class of γ in X.

This gives a well defined map F : ∂X → ∂Y .

A short digression on hyperbolic groups

Hyperbolic groups are abundant, in fact, there is a good sense in which the “random” finitely
presented group is hyperbolic. If one chooses relations “at random”, with probability one,
one obtains either the trivial group, Z/2Z, or a hyperbolic group. This is theorem of Gromov.

Hyperbolic groups also have many special properties. For instance, the word problem is
solvable (following ideas of Dehn) and they all admit finite presentations. A proof of this,
and a great introduction to hyperbolic groups in general can be found in the lecture notes
[8] of Gersten.

Here’s an advertisement for the richness of the boundary of hyperbolic groups, taken
from these notes:

The boundary is one of the reasons that topologists are so interested in hyperbolic groups.
N. Benakli showed in her thesis that the Menger and Sierpinski curves occur naturally as
boundaries of hyperbolic groups. The characterization of hyperbolic groups which have the
circle as boundary, achieved independently by Gabai, Casson-Jungreis, and Tukia, led to the
solution of a classical conjecture of Seifert, that closed irreducible 3-manifolds containing
normal infinite cyclic subgroups in their fundamental groups are Seifert fibred. One of the
outstanding problems of 3-dimensional topology is the conjecture that a closed irreducible
3-manifold with an infinite hyperbolic fundamental group admits a Riemannian metric of
constant negative curvature. As a result of the work of Bestvina and Mess, it is known that
the boundary of such a group is homeomorphic to the 2-sphere.

3 Boundary maps and quasi-conformal maps

The following are easy consequences of the definition of the boundary map from Corollary
2.14.

Proposition 3.1. Let f, g : Hn → Hn be quasi-isometries, with boundary maps F and
G : Sn−1 → Sn−1. Then

1. F and G are injective
2. The boundary map of f ◦ g is F ◦G.
3. If there exists D such that d(f(x), g(x)) < D holds for all x, then G = F .

Using the Mostow–Morse lemma, one also can show the following regularity properties.

〈boundary prop〉Proposition 3.2. Let f : Hn → Hn be a (K,C) quasi-isometry and let F : Sn−1 → Sn−1

be the boundary map of f . Then

1. F is continuous (and thus a homeomorphism)
2. F is quasi-conformal, with constant depending only on (K,C).

Recall that a quasi-conformal homeomorphism of a domain U in Rn is one such that

lim sup
r→0

sup{‖f(x)− f(y)‖ : ‖x− y‖ ≤ r}
inf{‖f(x)− f(y)‖ : ‖x− y‖ ≥ r}

≤ k
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or, equivalently

lim sup
x∈U

lim sup
r→0

(
sup

{
‖f(x)− f(y)‖
‖f(x)− f(z)‖

: ‖x− y‖ = ‖z − y‖ = r

})
≤ k

for some k ≥ 1. We’ll work with the second definition.
The key tool to prove both quasi-conformality and continuity is the following “bounded

projection” lemma.

Lemma 3.3. Let f : Hn → Hn be a quasi-isometry, with boundary map F . There exists
R > 0 such that, for any hyperplane P in Hn and geodesic γ orthogonal to P , the diameter
of the orthogonal projection of f(P ) onto a geodesic ray in the class of F (γ) is bounded by
R.

Here is a surprising immediate corollary of continuity of boundary maps (perhaps the
statement is not surprising, but how else would one prove it?)

Corollary 3.4. Hn and Hm are QI as metric spaces iff m = n

Proposition 3.2 generalizes to δ-hyperbolic groups, giving:

Corollary 3.5. If G and H are quasi-isometric hyperbolic groups, their boundaries are
homeomorphic.

3.1 Facts about quasi-conformal maps

This section and the following one introduce some (important and fundamental) tools from
analysis and ergodic theory used to finish Mostow’s proof. Since our focus is geometric group
theory, we will black-box most of these results. However, I encourage the interested reader
to consult given references to appreciate how GGT interacts with other fields.

If L : Rn → Rn is an invertible linear map, then it is easy to see that L is quasiconformal
and the constant k in the definition above is equal to the eccentricity of the ellipsoid given
by the image of a sphere under L. More generally, we have the following theorem:

〈qc linear〉Proposition 3.6. A k-quasiconformal map is almost-everywhere differentiable. Where
defined, the derivative is k-quasiconformal as a linear map.

The proof is not completely trivial, and originally due to Rademacher-Stepanov. C. Butler
has some quite readable (though not written for publication) notes giving a self-contained
exposition, at the level of a first course in analysis: http://math.uchicago.edu/~cbutler/
Quasiconformality.pdf

〈qc Liouville〉Proposition 3.7 (QC Liouville’s theorem). Suppose F : Sn → Sn is differentiable a.e. with
1-quasiconformal derivative where defined. Then F is conformal.

A sketch proof of this appears in [4]. As a historical note, the original “Liouville’s theorem”
states that a differentiable, conformal map between domains in Rn, n ≥ 3 is a (conformal)
Mobius transformation: a composition of inversions in spheres. This is not true for domains
in R2 (use the Riemann mapping theorem!), but does hold for conformal homeomorphisms
R2 → R2 or S2 → S2. The modern improvement is the lower regularity hypotheses on F .

In our context, conformal maps are particularly important because of the following
proposition:

Proposition 3.8. The conformal homeomorphisms of Sn−1 are precisely the boundary
maps of isometries of Hn.
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As an example, in the n = 2 and n = 3 cases, these are the (real and complex, respectively)

fractional linear transformations of S1 = RP 1 and S2 = Ĉ. More generally, the conformal
homeomorphisms of Sn−1 contain inversions in hypercircles, as well as the Euclidean sim-
ilarities of Rn−1 (dilations and isometries) – fixing a point of Sn−1, and identifying the
complement of this point with Rn−1 using stereographic projection. Note that these all
naturally extend to isometries of Hn.

The important takeaway from this section is the following:

Corollary 3.9. If F : Sn−1 → Sn−1 has a.e. conformal derivative, then F is the boundary
map of an isometry of Hn (and hence everywhere differentiable and conformal).

3.2 Finishing the proof of Mostow

At this point we have constructed a quasi-isometry f̃ : Hn → Hn, equivariant with respect
to the action of π1(M) and π1(N) by deck transformations, i.e for our isomorphism φ :
π1(M)→ π1(N), we have φ(α)f̃(x) = f̃(αx) for all α ∈ π1(M).

We showed that f̃ induces a map on equivalence classes of geodesic rays, hence on the
boundary Sn−1 → Sn−1. Using our basic properties of boundary maps, this equvariance
passes to equivariance of the boundary action.

Let E be the projectivization of the tangent bundle of Sn−1. Geometrically, thinking of
Sn−1 as the unit sphere in Rn, points in E are lines in Rn tangent to Sn−1.

Lemma 3.10. Isometries of Hn act transitively on E, in other words E is a homogeneous
space for isom(Hn).

Thus, we can identify E = G/H where H is the stabilizer of a point in E. In H3, we
have isom+(H2) ∼= PSL(2,C) and taking x ∈ E to be any tangent vector at 0 ∈ Ĉ, we have

that H is the subgroup of matrices of the form

(
λ 0
c λ−1

)
where λ, c ∈ R. In general, H is

a non-compact subgroup – it always contains an R-subgroup of dilitations.
Since F is almost everywhere differentiable, we have an almost-everywhere defined

function h : E → R given as follows. Elements of E can be represented by unit tangent

vectors to points in Sn−1, for a unit tangent vector v at p, define h(v) :=
‖DFp(v)‖
‖DFp‖ .

Think of h as measuring the failure of F to be conformal, if DF is conformal at p, then
h(v) = 1 for all v tangent at p. Since ‖DFp‖ = sup{‖DFp(w) : w a unit tangent vector at p},
it is easy to check that if g is conformal, then h(g∗(v)) = h(v). Now, elements of π1(M) act
on Hn by isometries, hence the induced boundary maps are conformal. We conclude that h
is π1(M)–invariant.

The last ingredient in the proof of Mostow is a classical result of Moore, proved about 10
years before Mostow’s work.

Theorem 3.11 (Moore Ergodicity). Let G be a non-compact, connected simple Lie group
with finite center (isom(Hn) is an example). Let H ⊂ G be a closed, non-compact subgroup
of G. Let Γ ⊂ G be a discrete subgroup such that G/Γ is compact. Then any measurable
Γ-invariant function on G/H is almost everywhere constant7.

See Chapter 2 of [12] for a detailed discussion and proof.
Using Moore’s theorem, we conclude that h is a.e. constant. We need to show that it is

a.e. 1. Note that, by construction, h(v) = 1 for some v tangent to every point; and for any
ε > 0, we have h(v) < 1 + ε on some positive measure set of tangent vectors. Since h is a.e.
constant, it must be a.e. equal to 1. Using Propositions 3.6 and 3.7, we now conclude that

7in fancier terminology, the action of Γ on G/H is ergodic
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F is conformal, so we can identify it with an isometry M̃ → Ñ . Since FγF−1 = φ(γ) for all
γ ∈ π1(M), this isometry descends to an isometry M → N that induces φ on π1.

Notice that here is another way boundary maps are helping us: f̃ : M̃ → Ñ is not an
isometry, but is “bounded distance from an isometry”. The induced boundary map tells us
that a genuine isometry exists.

4 Alternative approaches to the proof

In all approaches, we build f and the induced boundary map F as before, and need to show
that F is conformal. The first, due to Tukia (perhaps building on a similar argument by D.
Sullivan), avoids using Moore Ergodicity by a clever rescaling argument.

Tukia’s “zooming” argument.

?〈zooming〉?As before we know that F is differentiable almost everywhere, so has nonzero jacobian almost
everywhere. (Here’s where we’re using that the dimension of Sn−1 is at least 2 – on S1 there
are “cantor staircase” functions, differentiable a.e. with derivative a.e. zero). The idea of
this proof, coming from a Theorem of Tukia [?], is to “zoom in” on a point of differentiability.
By using a suitable choice of rescaling, one shows that the linear approximation to F at this
point sends a group of conformal maps (coming from π1(M)) to conformal maps, so must be
conformal.

Let x be a point of differentiability of F , and switch to the upper half space model where
x = 0 ∈ Rn−1. By composing F with a conformal map, we may assume F (0) = 0 and
F (∞) = ∞. Let L be the vertical line above 0, and let y = (0, ..., 0, 1) ∈ L. Since π1(M)
acts cocompactly, we may find a sequence γi ∈ π1(M) so that γi(y)→ x in the Euclidean
metric on Rn−1, and so that γi(y) is always hyperbolic distance at most D from L, where D
is the diameter of a fundamental domain for π1(M)8

Let yi be the (hyperbolic) closest point projection of γi(y) to L, and let λi ∈ R be such
that λiy = yi. Consider the sequence of quasi-conformal homeomorphisms λ−1i Fλi. Since
λi → 0, we have

lim
i→∞

λ−1i Fλi = DF0 ∈ GL(n,R).

Let gi = γ−1i λi. These send the point y near itself, so belong to a compact subset of
isom(Hn), hence converge along a subsequence to some g ∈ isom(Hn). Now we conjugate:

g−1i π1(M)gi = λ−1i π1(M)λi

since γi ∈ π1(M). Let Γ = g−1π1(M)g ⊂ isom(Hn). This is the limit (in the Chabauty
topology, after passing to a subsequence) of λ−1i π1(M)λi.

Take any sequence hi ∈ g−1i π1(M)gi converging to h ∈ Γ. Let A = DF0. Since
λ−1i Fλihi(λ

−1
i Fλi)

−1 is a sequence in isom(Hn), and converges to AhA−1

We claim now that A−1ΓA ⊂ isom(Hn). To see this, think of Γ as the limit of λ−1i π1(M)λi.
Since A = limi→∞ λ−1i Fλi, one argues (some care is required to argue in what sense this
limit is defined) that

Γ = lim
i→∞

λ−1i Fπ1(M)F−1λi

Since Fπ1(M)F−1 = π1(N), we have λ−1i Fπ1(M)F−1λi ⊂ isom(Hn), and since the group
of isometries is closed, Γ ⊂ isom(Hn).

8as a simplification, imagine the case where π1(M) contains a map of the form γ(x) = λx for some λ < 1.
Then we take the sequence γi = γi. The rest of the proof becomes much simpler in this case too.
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Since Γ is a (fairly large) group of isometries, this actually implies that A is a euclidean
similarity i.e. a composition of a dilatation x 7→ λx and a rotation about L. (Take a
hyperplane P through 0 in Rn, and γ ∈ Γ so that γA(P ) does not contain ∞, i.e. is a round
hemisphere. If A is not a similarity, then A−1γA would be an ellipsoid rather than a round
sphere).

We conclude that F is conformal at 0 and hence conformal everywhere the derivative
exists. Theorem 3.7 now implies that F is conformal.

The Gromov norm

One consequence of Mostow’s theorem is that, for hyperbolic manifolds of dimension ≥ 3,
the hyperbolic volume vol(M) is a topological invariant.

Gromov takes a different perspective on this. He defines a homological invariant of a
manifold (the Gromov norm, and shows that, for hyperbolic manifolds this is proportional
to the volume. With some extra work, one can use this to finish the proof of Mostow.

Definition 4.1. We work in singular homology. For an element α ∈ Hn(M ;R), define

‖α‖ = inf{Σ|ci| : Σciσi is a cycle representing α}

Heuristically, this measures the complexity of the class α.

Definition 4.2. For a manifold M , define ‖M‖ to be the norm of the fundamental class of
M .

Note that this immediately gives some information about the topology of M . For example,
you can show:

Exercise 4.3. Show from the definition that ‖Sn‖ = 0. Now, more generally, show that if
‖M‖ 6= 0, then any map f : M →M has degree ±1 or 0.

This follows from the easy fact that ‖f∗(α)‖ ≤ ‖α‖ for any continuous map f .
Gromov’s theorem is the following rigidity statement for hyperbolic manifolds.

Theorem 4.4 (Gromov). If M is a hyperbolic manifold, then ‖M‖ 6= 0. In fact, ‖M‖ =
vol(M)/vn, where vn is the maximal volume of an ideal simplex in Hn.

This has been generalized by Lafont–Schmidt and Connell-Farb to show ‖M‖ 6= 0 for
many examples of M = Γ\G/K where G is semi-simple, K a maximal compact subgroup.

One half of Gromov’s theorem is easy. Let ω be a volume form on M . Then

vol(M) = 〈ω, [M ]〉 =
∑

ci〈ω, σi〉 =
∑

ci vol(σi)

for any chain
∑
ciσi representing [M ]. Now show that each σi can be replaced with a

geodesic simplex, without changing the representative in homology, and without increasing
this sum. Since any geodesic simplex has volume less than vn, we have vol(M) ≤

∑
|ci|vn,

hence ‖M‖ ≥ vol(M)/vn. To get the other direction, one need to find a way to “efficiently”
represent [M ] by a cycle.

To apply this to Mostow rigidity, one shows that, since f̃∗[M ] = [N ] (by construction),
and volume is proportional to norm, the boundary map F must map maximal volume ideal
simplices to maximal volume ideal simplices. In Sn−1, for n− 1 ≥ 2, not every ideal simplex
is maximal volume, in fact the maximal ones are precisely those that are regular, i.e. where
the vertices can be permuted transitively by isometries. In the upper half-space model, if
one vertex of such a simplex is ∞, then the others form a regular (all side lengths equal)
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Euclidean simplex in Rn−1. Thus, there exists some isometry ψ such that ψ ◦ F fixes the
vertices of an ideal regular simplex. By reflecting vertices in opposite faces (iteratively), we
conclude that ψ ◦F fixes a dense set; continuity of F now implies that F = ψ−1, an isometry.

We have glossed over many details here, a complete exposition is given in [?] and [2].

A recent proof of Besson–Courtois–Gallot

Finally, it’s worth mentioning a recent proof technique that applies in a much wider context.
The general result is:

Theorem 4.5 (Besson–Courtois–Gallot [3]). Let (Y, g) be a Riemannian manifold, (X, g0)
a closed, connected, locally symmetric9 Riemannian manifold with negative curvature, both
of dimension n ≥ 3, and suppose f : Y → X is a map of nonzero degree. Then

(h(g))n vol(Y, g) ≥ |deg(f)|(h(g0))n vol(X, g0)

with equality if and only if f is homotopic to a locally isometric covering map.

From this one can derive “Mostow rigidity” for any negatively curved locally symmetric
manifolds. Take X and Y to be negatively curved, connected, locally symmetric, compact
manifolds with isomorphic fundamental groups, and f a homotopy equivalence between them.
Then the general theorem above gives an inequality in both directions, implying that X and
Y are isometric after rescaling the metrics so their volumes agree.

Amazingly, the machinery of the proof “reconstructs” the local isometry out of the
boundary map.

5 Failure of Mostow in H2

Much as there are many distinct Euclidean structures on the torus, there are many (in fact,
a 6g − 6 dimensional family) distinct hyperbolic structures on a surface of genus g ≥ 2.
However, the first two steps of Mostow rigidity carry through: given two closed hyperbolic
surface of genus g (i.e. with isomorphic fundamental groups), one builds a π1-equivariant
quasi-isometry of H2 that extends to a continuous map F of S1.

While the notion of quasi-conformal doesn’t make sense in dimension 1, the same argument
as in the higher dimensional case proves that the boundary map is quasi-symmetric. Recall
that a function f : R→ R is symmetric (at 0) if f(x) = −f(−x). Hence,

〈S1qsdef〉Definition 5.1. A function F : S1 → S1 is k-quasi-symmetric if, for all x ∈ S1

lim
r→0

|F (x− r)|
|F (x+ r)|

< k

The standard generalization of this to arbitrary metric spaces is the following:

Definition 5.2. Let ν be an increasing function [1,∞)→ [1,∞). A function f : X, dX →
Y, dY is ν-quasi-symmetric if, for all x, y, z ∈ X we have

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
.

9a Riemannian manifold is locally symmetric if its universal cover has the property that, for every point
p, there is an isometry fixing p and reversing geodesics through p. The negatively curved ones all have the
form Γ\G/K for a semisimple Lie group G, with maximal compact subgroup K and Γ a lattice
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If X and Y are domains in Rn, (n ≥ 2), then ν-quasi-symmetric implies k-quasi-conformal,
for a constant depending only on ν, and vice versa.

Proposition 5.3. A quasi-symmetric map of the circle is differentiable a.e.

However, q.c. maps are not necessarily absolutely continuous, so may have derivative a.e.
zero!

Exercise 5.4 (straightforward exercise). Check your understanding of our proof of Mostow
by re-doing it for 2 dimensional manifolds, and showing that the boundary map is continuous
and quasi-symmetric in the sense of definition 5.1.

In fact, Tukia’s “zooming” argument (together with an argument using ergodicity) works
well in this case, giving the following:

Proposition 5.5 (Mostow rigidity on the line). Let F : H2 → H2 be a quasi-isometry,
equivariant with respect to the action of π1(Σg) for two hyperbolic structures on a surface
Σg. If F is differentiable with nonzero derivative at any point, then F is conformal, and the
hyperbolic structures are equivalent.

In fact, one needs much weaker hypotheses than this. There is a delightful little survey
called Mostow Rigidity on the Line by S. Agard [1] that discusses this family of ideas.

We now discuss what else one can recover in dimension 2.

5.1 QI rigidity of surface groups

A class of groups C is QI rigid if any group quasi-isometric to a group in C is virtually
isomorphic (see Remark 1.13) to a group in C. This is known for many classes of groups,
including free groups (due to Stallings) and free abelian groups.

One consequence of the first half of the proof of Mostow in H2 (with a lot of added work!)
is QI rigidity for the class of surface groups, meaning fundamental groups of surfaces of genus
g ≥ 2. Any group QI to one of these is QI to the hyperbolic plane, and the “boundary map”
construction gives an action of G on S1 with finite kernel. The action has the additional
property that it is properly discontinuous and cocompact on the space of distinct triples
of points in S1. Such actions have been well studied, and are known as convergence group
action. It was proved in a series of papers by Tukia, Gabai, and Casson–Jungreis that a
group with such an action is essentially conjugate to a discrete subgroup of PSL(2,R); this
gives our virtual isomorphism between G and a surface group.
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