MATH 185-1: Complex Analysis

Homework #7
Due March 17, 2016

All problems are from Gamelin, *Complex Analysis*, unless stated otherwise. If you use an exercise that has not been shown on a previous assignment or in class, prove it first before applying it.

- 1. Exercise V.i.7
- 2. Exercise V.2.10
- 3. Exercise V.2.12
- 4. Exercise V.3.4
- 5. Exercise V.4.1
- 6. Exercise V.4.3
- 7. Exercise V.4.12
- 8. Exercise V.4.13

Extra Credit: Show that the uniform limit of analytics functions is analytic using the Cauchy integral formula through the following steps.

(a) Let $\{f_k(z)\}_{k=0}^{\infty}$ be a sequence of analytic functions on a disk $\{z: |z-z_0| < \rho\}$ that converges uniformly to f(z) on $\{z: |z-z_0| < \rho\}$. Show that for $0 < r < \rho$,

$$f(z) = \frac{1}{2\pi i} \oint_{|z-z_0|=r} \frac{f(w)}{w-z} dw,$$

for all z such that $|z - z_0| < r$.

(b) Use part (a) to show that for $|z - z_0| < r$

$$f'(z) = \frac{1}{2\pi i} \oint_{|z-z_0|=r} \frac{f(w)}{(w-z)^2} dw.$$

(You may want to use Exercise III.1.6 from Homework #4.)

(c) Conclude that if $\{f_k(z)\}_{k=0}^{\infty}$ is a sequence of analytic functions on a domain D that converges uniformly to f(z) on D, then f(z) is analytic on D.