MATH 185-1: Complex Analysis

Homework \#5
Due March 3, 2016
All problems are from Gamelin, Complex Analysis, unless stated otherwise. If you use an exercise that has not been shown on a previous assignment or in class, prove it first before applying it.

1. Let $h(z)$ be a continuous function defined on a domain D and $z_{0} \in D$. Denote the average value of $h(z)$ on the circle $\left|z-z_{0}\right|=r$ by

$$
A\left(r, z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} h\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Show that for every $\epsilon>0$, there exists a $\delta>0$ such that if $r<\delta$, then $\left|A\left(r, z_{0}\right)-h\left(z_{0}\right)\right|<\epsilon$. (Note that this is a rigorous formulation of the fact that the average value of $h(z)$ on a circle centered at z_{0} approaches the value of the function at the center z_{0} as the radius decreases towards 0.$)$
2. Exercise III.3.2
3. Exercise III.4.1
4. Exercise III.5.3
5. Exercise III.5.5
6. Exercise IV.1.5
7. Evaluate $\int_{\gamma} e^{z} d z$, where γ is the straight line segment from the origin to $1+2 i$ by (a) parametrizing the path, and (b) finding an appropriate primitive for the integrand.
8. Exercise IV.2.5

