
Math 185 Lecture 4
Final Exam

May 14, 2014

Name:

• Complete the following problems. In order to receive full credit, please provide rigorous
proofs and show all of your work and justify your answers. Unless stated otherwise,
you may use any result proved in class, the text, or in homeworks, but be sure to
clearly state the result before using it and to verify that all hypotheses are satisfied.

• This is a closed-book, closed notes exam. No electronic devices, including cellphones,
headphones, or calculation aids, will be permitted for any reason.

• You will have 150 minutes to complete the exam. The start time and end time will
be signaled by the instructor. Do not open the exam or write anything on the exam,
including on this cover sheet, until the exam has begun.

• The exam and all papers must remain in the testing room at all times. When you are
finished, you must hand your exam paper to the instructor. In the case of a fire alarm,
leave your exams in the room, face down, before evacuating. Under no circumstances
should you take the exam with you.

• If you need extra room for your answers, use the back side of each page. You may also
use those back sides as well as the spare blank pages at the end of the exam for scratch
work. If you must use extra paper, use only that provided by the instructor; make sure
to write your name on it and attach it to this exam. Do not unstaple or detach pages
from this exam.

• Please do not detach the formula sheet from the exam.

After reading the above instructions, please sign the following:

On my honor, I have neither given nor received any aid on this examination.
I have furthermore abided by all other aspects of the honor code with respect

to this examination.

Signature:
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Stereographic projection:

x = X/(1− Z) X = 2x/(|z|2 + 1)

y = Y/(1− Z) Y = 2y/(|z|2 + 1)

Z = (|z|2 − 1)/(|z|2 + 1).

Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Harmonic conjugate:

v(x, y) =

∫ y

y0

∂u

∂x
(x, t)dt−

∫ x

x0

∂u

∂y
(s, y0)ds+ C

v(B) =

∫ B

A

−∂u
∂y
dx+

∂u

∂x
dy.

Fractional linear transformation:

w = f(z) =
z − z0

z − z2

z1 − z2

z1 − z0

.

Mean value property:

u(z0) =

∫ 2π

0

u(z0 + reiθ)
dθ

2π
.

Cauchy integral formula:

f (m)(z) =
m!

2πi

∫
∂D

f(w)

(w − z)m+1
dw.

Power series and Laurent series:

ak =
1

2πi

∮
|ζ−z0|=r

f(ζ)

(ζ − z0)k+1
dζ.

Residue theorem: ∫
∂D

f(z)dz = 2πi
m∑
j=1

Res[f(z), zj].

Argument principle:

1

2πi

∫
∂D

f ′(z)

f(z)
dz =

1

2π

∫
∂D

d arg(f(z)) = N0 −N∞.

Inverse function theorem:

f−1(w) =
1

2πi

∫
|ζ−z0|=ρ

ζf ′(ζ)

f(ζ)− w
dζ, |w − w0| < δ.
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1. For each of the following functions, determine whether the given point is a removable
singularity, a pole, an essential singularity, or not a singularity. If it is a pole, give the
order of the pole.

(a) (3 points) z−1 cos 1
z

at z = 0

Solution: The power series for cos z centered at 0 converges for all z and is
given by

cos z = 1− z2

2!
+
z4

4!
− z6

6!
+ . . . .

Therefore, for z 6= 0,

cos
1

z
= 1− 1

2!

1

z2
+

1

4!

1

z4
+ . . . .

Then,

z−1 cos z =
1

z
− 1

2!

1

z3
+

1

4!

1

z5
+ . . .

so that z = 0 is an essential singularity.

(b) (3 points) 1−cos z
z3(z−π)

at z = 1

Solution: The function is analytic at z = 1, so it is not a singularity.
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(c) (3 points) (z−3) sin(πz)
z(z−1)3

at z = 1

Solution: We have that sinπ = 0 but the first derivative sin(πz)′ = π cos(πz)
is non-zero at z = 1. Hence, z = 1 is a zero or order 1 for (z− 3) sin(πz). Since

z = 1 is a zero of order 3 for the denominator z(z − 1)3, then (z−3) sin(πz)
z(z−1)3

has a
pole of order 2 at z = 1.

(d) (3 points) z(z−1)3

(z−3) sin(πz)
at z = 1

Solution: This is the reciprocal of part (c), which has a pole of order 2 at

z = 1. Hence, z(z−1)3

(z−3) sin(πz)
has a removable singularity at z = 1, and in fact has

a zero of order 2.
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2. Determine whether the following statements are true or false. No justification is required.

(a) (2 points) If f(z) has an essential singularity at z0, then limz→z0 |f(z)| =∞.

true FALSE

(b) (2 points) If Pdx+Qdy is closed, then
∫
Pdx+Qdy is path independent.

true FALSE

(c) (2 points) If f(z) is analytic at z0, then Res[f(z), z0] = 0.

TRUE false

(d) (2 points) The gamma function Γ(z) =
∫∞

0
e−ttz−1dt defined for Re z > 0, satisfies

Γ(n+ 1) = n! for all positive integers n.

TRUE false

(e) (2 points) Every harmonic function on a domain D has a harmonic conjugate on
D.

true FALSE

(f) (2 points) The number of prime numbers less than x is equal to log x.

true FALSE

(g) (2 points) The power series for Log z centered at z = −5 + i has radius of conver-
gence equal to 1.

true FALSE

(h) (2 points) If f(z) is a non-constant function that is analytic on D, then f(U) is
open for every open subset U ⊆ D.

TRUE false

(i) (2 points) The function p(z) = z5 + 3z4 − 11z3 + 4z + 2 has 5 roots inside the unit
disk |z| < 1.

true FALSE
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3. (15 points) Determine the subset of points in C for which f(z) = 2z+z̄2 is differentiable.

Solution: Let z = x+ iy. Then

f(z) = f(x+ iy) = 2(x+ iy) + (x− iy)2 = 2x+ 2iy + x2 − y2 − 2xyi

= (2x+ x2 − y2) + i(2y − 2xy).

The real part of f(z) is given by u(x, y) = 2x+ x2 − y2, while the imaginary part of
f(z) is given by v(x, y) = 2y − 2xy. The function f(z) is differentiable at z if and
only if u and v satisfy the Cauchy-Riemann equations at z.

We see that

∂u

∂x
= 2 + 2x

∂v

∂x
= −2y

∂u

∂y
= −2y

∂v

∂y
= 2− 2x.

Therefore,

∂u

∂x
=
∂v

∂y

⇔ 2 + 2x = 2− 2x

⇔ x = 0,

and

∂u

∂y
= −∂v

∂x

⇔ −2y = −(−2y)

⇔ y = 0.

The Cauchy-Riemann equations are satisfied if and only if z = 0, so f(z) is differen-
tiable if and only if z = 0.
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4. (a) (5 points) Let ΓR be the semicircle in the upper half-plane of radius R centered at
the origin. Show that

lim
R→∞

∫
ΓR

eiz

z(z2 + 1)
dz = 0.

Solution: On ΓR, we have that |eiz| = e−i Im z ≤ e0 = 1, and |z(z2 + 1)| =
|z||z2 + 1| ≥ R(R2 − 1). Hence,∣∣∣∣ eiz

z(z2 + 1)

∣∣∣∣ ≤ 1

R(R2 − 1)
= M.

The length of ΓR is L = πR. By the ML-estimate, then∣∣∣∣∫
ΓR

eiz

z(z2 + 1)
dz

∣∣∣∣ ≤ πR

R(R2 − 1)
=

π

R2 − 1
.

As R→∞, this goes to 0, so

lim
R→∞

∫
ΓR

eiz

z(z2 + 1)
dz = 0.

(b) (5 points) Let γε be the semicircle in the upper half-plane of radius ε centered at
the origin. Find

lim
ε→0

∫
γε

eiz

z(z2 + 1)
dz.

Solution: At z = 0, eiz

z(z2+1)
has at worst a pole of order 1. We can compute

the residue as

Res[
eiz

z(z2 + 1)
, 0] = lim

z→0
z

eiz

z(z2 + 1)
= ei002 + 1 = 1.

The curve γε travels a circular arc of angle π, so by the fractional residue theo-
rem,

lim
ε→0

∫
γε

eiz

z(z2 + 1)
dz = πi(1) = πi.
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(c) (5 points) Compute ∫ ∞
−∞

sinx

x(x2 + 1)
dx,

by using the residue theorem.

Solution: Let f(z) = eiz

z(z2+1)
. Then f(z) has simple poles at z = 0,±i. Let

DR,ε be the half-disk of radius R in the upper half-plane, indented at 0. Only i
lies inside DR,ε, so by the residue theorem,∫

∂DR,ε

f(z)dz = 2πiRes[f(z), i]

= 2πi lim
z→i

(z − i) eiz

z(z2 + 1)

= 2πi lim
z→i

eiz

z(z + i)

= 2πi
e−1

i(2i)
= −πi

e
.

We also have that∫
∂DR,ε

f(z)dz =

∫
ΓR

f(z)dz −
∫
γε

f(z)dz +

∫ R

ε

f(z)dz +

∫ −ε
−R

f(z)dz.

If we take the limit as R→∞ and ε→ 0, applying parts (a) and (b) allows us
to conclude

−πi
e

= 0− πi+

∫ ∞
0

eix

x(x2 + 1)
dx+

∫ 0

−∞

eix

x(x2 + 1)
dx

⇒ πi(1− e−1) =

∫ ∞
−∞

eix

x(x2 + 1)
dx.

Noting that eix = cosx + i sinx, if we take the imaginary part of the above
equation, we find that ∫ ∞

−∞

sinx

x(x2 + 1)
dx = π(1− e−1).
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5. (15 points) Find the Laurent series centered at 0 for the function

f(z) =
1

(z + 3)(z + 1)
,

that converges at z = 2. Find the annulus of convergence for the Laurent series.

Solution: We first find the partial fraction decomposition

1

(z + 3)(z + 1)
=

A

z + 1
+

B

z + 3
.

It is easy to check that A = 1
2

and B = −1
2
. Hence, f(z) = 1

2

(
1
z+1

)
− 1

2

(
1
z+3

)
.

Using the geometric series formula, we have that for |z| > 1,

1

z + 1
=

1

z

1

1 + 1/z

=
1

z

∞∑
n=0

(−1/z)n

=
1

z

0∑
n=−∞

(−z)n

=
−1∑

n=−∞

(−1)n+1zn.

Also, for |z| < 3,

1

z + 3
=

1

3

1

1 + z/3

=
1

3

∞∑
n=0

(z/3)n.

Therefore,

f(z) =
−1∑

n=−∞

(−1)n+1 z
n

2
+
∞∑
n=0

−zn

3n(6)
.
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6. (15 points) Let D = {z = reiθ : ε < r < R, 0 < θ < 3π
2
}. Express

lim
R→∞,
ε→0

∫
∂D

dz

1 + z4/3

as a sum involving
∫∞

0
dx

1+x4/3
and limits of integrals along circular arcs. You do not need

to evaluate any integrals or limits, and you do not need to find a numerical value for the
integral above.

Solution: Let ΓR be the 3/4 circle of radius R given by Reiθ with 0 < θ < 3π
2

and
γε be the 3/4 circle of radius ε. Take z4/3 to be the branch defined by the map
reiθ 7→ r4/3e4iθ/3 where 0 < θ < 2π. We have that∫

∂D

dz

1 + z4/3
=

∫
ΓR

dz

1 + z4/3
−
∫
γε

dz

1 + z4/3
+

∫ R

ε

dz

1 + z4/3
+

∫ −iε
−iR

dz

1 + z4/3
.

We can rewrite ∫ R

ε

dz

1 + z4/3
=

∫ R

ε

dx

1 + x4/3
.

Also, by parametrizing z = −ix,∫ −iε
−iR

dz

1 + z4/3
=

∫ ε

R

−idx
1 + (xe3πi/2)4/3

=

∫ R

ε

idx

1 + x4/3
.

Therefore, if we take the limit as R→∞ and ε→ 0, we have

lim
R→∞,
ε→0

∫
∂D

dz

1 + z4/3
= lim

R→∞

∫
ΓR

dz

1 + z4/3
− lim

ε→0

∫
γε

dz

1 + z4/3
+ (1 + i)

∫ ∞
0

dx

1 + x4/3
.
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7. (10 points) Suppose that f(z) is analytic in a bounded domain D with piecewise smooth
boundary, and f(z) extends to be analytic on ∂D. Let I = {iy : 0 ≤ y <∞} denote the
positive imaginary axis. Suppose that f(∂D) ∩ I = ∅. Show that f(z) has no zeros in
D.

Solution: Suppose that f(∂D) ∩ I = ∅. In other words, f(z) /∈ I for z ∈ ∂D.

We have that if γ is any curve (not necessarily closed) in C \ I, then the largest that
the change in argument can be is 2π (traveling from just left of I counter-clockwise
around the origin to just right of I) while the smallest it can be is −2π (traveling
from just right of I clockwise around the origin to just left of I). One way to see this
is to define a branch of the argument function Arg z so that π

2
< Arg z < 5π

2
, which

is continuous on C \ I. Then,∫
γ

d(arg z) = Arg(b)− Arg(a)

where a and b are the starting point and ending point of γ, respectively. Then, for
this branch of Arg, we can see that −2π < Arg(b)− Arg(a) < 2π.

Since f(z) has its image in C \ I for z ∈ ∂D, we can conclude that

−2π <

∫
∂D

d(arg f(z)) < 2π.

By the argument principle, we know that
∫
∂D
d(arg f(z)) is always an integer multiple

of 2π, so the integral must be 0.

But also, 0 =
∫
∂D
d(arg f(z)) = 2π(N0 − N∞), where N0 is the number of zeros of

f(z) in D, and N∞ is the number of poles of f(z) in D. Since f(z) is analytic on D,
N∞ = 0. Thus, we can conclude that N0 = N∞ = 0
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Question: 1 2 3 4 5 6 7 Total

Points: 12 18 15 15 15 15 10 100

Score:
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