Quadratic residues and quadratic nonresidues

Kyle Miller
Feb 17, 2017

A number \(a\) is called a quadratic residue, modulo \(p\), if it is the square of some other number, modulo \(p\). That is to say, \(a\) is a quadratic residue if there is a \(b\) such that \(a \equiv b^2 \pmod{p}\). A number is called a quadratic nonresidue if it is not a quadratic residue.\(^1\)

In one discussion section on Wednesday, I described how to use primitive roots to prove the following fact:

Theorem 1. If \(p\) is an odd prime, then there are exactly \(\frac{p-1}{2}\) nonzero quadratic residues (and \(\frac{p-1}{2}\) quadratic nonresidues).

For sake of the other discussion, and because primitive roots are a topic of the course, I’ll give the primitive root argument later, but the purpose of this note is to explain another argument that doesn’t make use of primitive roots that I came up with last night.

Another way to define a quadratic residue is that a number \(a\) is a quadratic residue if \(a\) is a square root modulo \(p\). That is to say, \(a\) is a quadratic residue if \(a\) is a root modulo \(p\). Another way to define a quadratic residue is that a number \(a\) is a quadratic residue if \(a\) is a square root modulo \(p\). That is to say, \(a\) is a quadratic residue if \(a\) is a root modulo \(p\).

Fact: every nonzero number \(a\) modulo \(p\) has either zero or two distinct square roots. Suppose \(a\) had a square root \(b\). Then \(x^2 - a \equiv (x - b)(x + b) \pmod{p}\) is a factorization of the polynomial. The equation \((x - b)(x + b) \equiv 0 \pmod{p}\), since \(p\) is prime, is equivalent to saying \(x - b \equiv 0 \pmod{p}\) or \(x + b \equiv 0 \pmod{p}\), so the only roots to \(x^2 - a\) are \(x \equiv \pm b \pmod{p}\). We know \(b \neq -b \pmod{p}\) since \(b \equiv -b \pmod{p}\), then \(2b \equiv 0 \pmod{p}\), and since \(\gcd(2, p) = 1\), \(b \equiv 0 \pmod{p}\), but \(b \neq 0 \pmod{p}\) since \(0 \neq a \equiv b^2 \pmod{p}\).

So every nonzero quadratic residue has exactly two square roots, and (by definition) every nonzero number squares to a quadratic residue. This implies that half of the nonzero numbers, modulo \(p\), are quadratic residues, which is to say there are \(\frac{p-1}{2}\) quadratic residues.

More specifically, we know that \(b^2 \equiv (-b)^2 \pmod{p}\), so the numbers \(1, \ldots, \frac{p-1}{2}\) represent all of the nonzero quadratic residues. We know that they represent distinct quadratic residues since the only time \(x^2 \equiv y^2 \pmod{p}\) is when \(x \equiv \pm y \pmod{p}\), and the numbers in the list \(1, \ldots, \frac{p-1}{2}\) are not negatives of each other.

Since there are \(p - 1\) nonzero numbers, that leaves \(p - 1 - \frac{p-1}{2} = \frac{p-1}{2}\) quadratic nonresidues.

1 With primitive roots

A primitive root, modulo \(p\), is a number \(a\) with the property that the list \(a, a^2, a^3, \ldots\) contains all the numbers \(1, 2, \ldots, p-1 \pmod{p}\).

The equation \(x^2 \equiv a \pmod{p}\) can be rewritten as \(\left(a^{n/2}\right)^2 \equiv a^n \pmod{p}\), where \(n\) is chosen so that \(a \equiv a^n \pmod{p}\), and where \(k\) is the unknown. The congruence is equivalent to \(a^{2k} \equiv a^n \pmod{p}\), and by Fermat’s little theorem it is equivalent to \(2k \equiv n \pmod{p-1}\), since \(\alpha \neq 0 \pmod{p}\). A homework problem concerns congruences like this, and it says the solutions satisfy \(k \equiv \frac{n}{2} \pmod{p-1}\) since \(\gcd(p-1, 2) = 2\). The fraction \(\frac{n}{2}\) might not be an integer, and in that case the solution is not satisfied. Otherwise, this gives the value of \(k\) modulo \(\frac{p-1}{2}\), so there are exactly two solutions modulo \(p-1\): \(\frac{n}{2}\) and \(\frac{n}{2} + \frac{p-1}{2}\). (Going back to the \(x \equiv a^k \pmod{p}\), then \(x\) is \(a^{n/2}\) or \(a^{n/2}a^{(p-1)/2}\), where \(a^{(p-1)/2} \equiv -1 \pmod{p}\) since when squared it is 1.)

This is all to prove that there are either zero or two distinct square roots of a number, and then the same counting argument follows.

\(^{1}\)The word residue is old and refers to the remainder after division. The value \(b^2 \pmod{p}\) is a quadratic residue.
2 Finding quadratic nonresidues

It is extremely easy to find a nonzero quadratic residue: 1 is 1^2. However, it is less straightforward finding a nonresidue; a reason one might want to find one is that the algorithm for computing square roots modulo p requires finding some quadratic nonresidue. One way to find a nonresidue is to exhaustively list out all squares and take a number which is not in that list, but this is not efficient.

Suppose we had an efficient method of determining whether a particular number is a quadratic residue or not. By the fact that exactly half of the nonzero numbers modulo an odd prime are quadratic residues, we can perform a randomized algorithm: choose a random number, check if it’s a residue. Since each attempt has a 50% chance of succeeding, we would expect the algorithm to take two steps on average to find one.

There is, in fact, an efficient method of determining whether a particular number is a quadratic residue or not, and that is using the Legendre symbol, which I will not discuss here.

3 Bonus: why is Fermat’s little theorem true?

The proof which makes the theorem most obvious uses group theory, and in particular Lagrange’s theorem. In this section I’ll give a proof which is essentially using Lagrange’s theorem, but I won’t use any group theory language.

Theorem 2. If $a \not\equiv 0 \pmod{p}$, then there is some integer $n \geq 1$ such that $a^n \equiv 1 \pmod{p}$.

Proof. Consider the sequence a^1, a^2, a^3, \ldots. Since there are only finitely many numbers modulo p, by the Pigeonhole principle, there must be some numbers $n < m$ such that $a^n \equiv a^m \pmod{p}$. Since a has an inverse modulo p, a^n has an inverse modulo p, so $1 \equiv a^{m-n} \pmod{p}$. Thus, $m-n$ is the required number.

Let the smallest positive n such that $a^n \equiv 1 \pmod{p}$ be called the order of a modulo p. Our goal is to prove that the order of a divides $p-1$.

Let H_a be the set of powers of a modulo p, so $H_a = \{a^1, a^2, a^3, \ldots\}$. We have just shown that $|H_a|$ is the order of a. For $b \not\equiv 0 \pmod{p}$, let bH_a denote the set $\{ba^k : a^k \in H_a\}$. Since b has an inverse, multiplying by b is a bijection, so $|bH_a| = |H_a|$.

Fact: $a^i H_a = H_a$. This is because $a^i H_a \subseteq H_a$, and equality follows because they have the same size.

Fact: For any $b_1, b_2 \not\equiv 0 \pmod{p}$, then $b_1 H_a$ and $b_2 H_a$ are either disjoint sets or equal sets. Suppose $b_1 H_a$ and $b_2 H_a$ are not disjoint sets, which means they have an element in common, so $b_1 a^{k_1} = b_2 a^{k_2}$ for some k_1, k_2. Then $b_1 H_a = b_2 a^{k_2-k_1} H_a = b_2 H_a$.

Fact: $\{bH_a : b \not\equiv 0 \pmod{p}\}$ is a partition of $1, 2, \ldots, p-1$. Every number $1 \leq b < p-1$ is in at least one of these sets, in particular $b H_a$, and every number is in at most one since they are disjoint or equal.

Since every set $b H_a$ is the same size, then $|H_a|$ divides $p-1$. That is, $|H_a| m = p-1$ for some $m \in \mathbb{Z}$. Thus, we have Fermat’s little theorem:

Theorem 3. If $a \not\equiv 0 \pmod{p}$ then $a^{p-1} \equiv 1 \pmod{p}$.

Proof. $a^{p-1} \equiv a^{|H_a| m} \equiv (a^{|H_a|})^m \equiv 1^m \equiv 1 \pmod{p}$.

If you want some words to look up: 1, …, $p-1$ are the elements of the multiplicative group of $\mathbb{Z}/p\mathbb{Z}$, H_a is the cyclic subgroup generated by a, and $b H_a$ is a coset.