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In this note, we will prove from first principles that polynomials are continuous functions.
It is meant to give the general flavor of ε-δ proofs for the general calculus student. For almost
all students, limits are their first introduction to formal mathematics, and they are a fairly
difficult first concept to absorb. Always remember: drops wear down the stone, not by
strength but by constant falling.

By an open interval, we mean a set of numbers (a, b), with a < b, defined to be all x ∈ R
such that a < x < b. An example of an open interval is (−1, 1), which is all numbers x
such that −1 < x < 1 (i.e., an interval without the end points). We may also let a or b be
±∞, so, for instance, we consider (−∞,∞) to be an open interval. Suppose c is a number,
and suppose a < c < b. A punctured open interval around c is a set of all x 6= c such that
a < x < b. In other words, it is an open interval around c without c itself. Notice that a
punctured open interval is the union of two open intervals.

First, let us recall the definition of a limit. (This is equivalent to Stewart 2.4.2).

Definition 1. Let a ∈ R be a constant, and let f be a function which is definined on a
punctured open interval around a.1 We say that f(x) has the limit L ∈ R as x approaches
a if for every ε > 0, there exists some δ > 0 such that whenever x satisfies 0 < |x− a| < δ,
then |f(x)− L| < ε. We write this as

lim
x→a

f(x) = L.

Importantly, the lim symbol is shorthand the entire “for every ε > 0 there is some δ > 0
such that whenever x ...” machinery. Never forget this.

Notice that the set of all x such that 0 < |x− a| < δ is a punctured open interval around
a itself, which is why we require f to be defined on a punctured open interval. Also notice
that this does not require f to even be defined at a itself.

If a limit exists for a function at some point, then this means the value of the function
varies arbitrarily little when we restrict x to arbitrarily small intervals around a. The choice
for the variable ε comes from the word “error.” Because this means “infinitesimally small”
changes in x correspond to “infinitesimally small” changes in f(x), somehow this captures
our intuition of a function being continuous:

1The function may well be defined elsewhere, too. We are just wanting the function to be at least defined
in some punctured open interval around a.

1



Definition 2. Let a ∈ R be a constant, and let f be a function defined on an open interval
containing a. We say f is continuous at a if limx→a f(x) = f(a).

If there is an open interval containing a, then there is also a punctured open interval
around a, so the limit makes sense, and f(a) makes sense because the definition requires
that f be defined at a.

Probably closer to most people’s intuition is the following definition:

Definition 3. A function f is continuous on an open interval (a, b) if it is continuous at
each point in (a, b).2

This is roughly equivalent to saying that a function is continuous if its graph can be
drawn without lifting the pen.

With these definitions out of the way, we will prove a sequence of theorems that will be
combined to ultimately show that polynomials are continuous on (−∞,∞), as one would
expect if one has ever seen the graphs of polynomials before.

Theorem 1. Let c and a be real numbers. Then the constant function f(x) = c is continuous
at a.

Proof. Assume ε > 0 is any real number. Let δ = 1.3 Then, whenever x is such that
0 < |x − a| < δ, we have |f(x) − f(a)| = |c − c| = 0 < ε. Since ε was arbitrary, we have
found a δ > 0 for every ε > 0, so this means limx→a f(x) = f(a) (by the definition of the
limit), and so f is continuous at a.

Notice that this theorem works for any a, so it follows that the constant function is
continuous on the entire open interval (−∞,∞), too.

Theorem 2. Let a be a real number. Then the function f(x) = x is continuous at a.

Proof. Assume ε > 0 is any real number. Let δ = ε.4 Then whenever x is such that
0 < |x − a| < δ, it is also the case that |f(x) − f(a)| = |x − a| < ε (since ε = δ). By the
definition of the limit, since ε was arbitrary, this means limx→a f(x) = f(a), and so f is
continuous at a.

Again, this theorem implies f(x) = x is continuous on (−∞,∞).

Theorem 3 (Addition rule). Let a be a real number, and let f, g be two functions defined on
a punctured open interval of a such that limx→a f(x) = Lf and limx→a g(x) = Lg (i.e., both of
these limits exist, and let Lf and Lg be the values of the limits). Then limx→a(f(x)+g(x)) =
Lf + Lg.

Proof. Assume ε > 0 is any real number. Since f and g approach Lf and Lg, respectively,
as x approaches a, we may obtain from the definition of the limit δf > 0 and δg > 0 such
that

2This makes sense because (a, b) is itself an open interval containing each point of (a, b).
3This is an arbitrary choice. We could have let it be ∞, if that were a number.
4Actually, we can let δ be any number greater than 0 but less than ε. We just need to find some punctured

open interval around a on which the value of f(x) doesn’t get more than ε away from f(a), and δ = ε is
simple and sufficient.
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• whenever x is such that 0 < |x− a| < δf then |f(x)− Lf | < ε
2
, and

• whenever x is such that 0 < |x− a| < δg then |g(x)− Lg| < ε
2
.

The “epsilon” from which we get δf and δg is ε
2

in this case. Let δ = min{δf , δg}. So,
whenever x is such that 0 < |x− a| < δ, by the triangle inequality5 and substitution,

|(f(x) + g(x))− (Lf + Lg)| = |(f(x)− Lf ) + (g(x)− Lg)|
≤ |f(x)− Lf |+ |g(x)− Lg|

<
ε

2
+
ε

2
= ε.

Hence, since ε was arbitrary, there is a δ for every ε > 0, so the limit of f(x) + g(x) as x
appoarches a exists, and it is Lf + Lg.

Do not confuse this theorem with its converse. It is not generally true in that if
limx→a(f(x) + g(x)) exists, then so does both limx→a f(x) and limx→a g(x). For instance,
consider limx→a(

1
x

+ −1
x

).
Notice that the theorem implies that if f and g are each continuous at a, then the limit

of f(x) + g(x) as x approaches a is f(a) + g(a).6

The next theorem is fairly tricky. Try to notice all of the tricks: the triangle inequality,
adding clever forms of 0, and choosing “epsilons” so that there is a δ which makes everything
work out perfectly in the end.

Theorem 4 (Product rule). Let a be a real number, and let f, g be two functions defined
on a punctured open interval of a such that limx→a f(x) = Lf and limx→a g(x) = Lg. Then
limx→a f(x)g(x) = LfLg.

Proof. Assume ε > 0 is any real number. By existence of the limits for f and g as x
approaches a, we can obtain δf , δg, and δ0 with the following properties:

• Whenever x is such that 0 < |x− a| < δf , then |f(x)− Lf | < ε
2(1+|Lg |) .

• Whenever x is such that 0 < |x− a| < δg, then |g(x)− Lg| < ε
2(1+|Lf |)

.

• Whenever x is such that 0 < |x− a| < δ0, then |g(x)− Lg| < ε.

Let δ = min{δf , δg, δ0}. Then, whenever x is such that 0 < |x− a| < δ, we have that

|f(x)g(x)− LfLg| = |(f(x)g(x)− Lfg(x)) + (Lfg(x)− LfLg)|
≤ |f(x)g(x)− Lfg(x)|+ |Lfg(x)− LfLg|
= |g(x)||f(x)− Lf |+ |Lf ||g(x)− Lg|.

5This is the statement that |a+ b| ≤ |a|+ |b|. This is true if a, b are either real or complex. If you need
convincing it is true for the real case, go through all the possibilities for a, b being positive or negative.

6I am overlooking one thing that I will leave as an exercise. Why is the limit unique? In other words,
show that if limx→a f(x) = L1 and limx→a f(x) = L2, then L1 = L2. No, we do not already know this, and
yes, if we want to be careful, we ought to prove uniqueness.
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Notice that

|g(x)| = |(g(x)− Lg) + Lg|
≤ |g(x)− Lg|+ |Lg|

< 1 + |Lg|,

because δ ≤ δ0. Also notice that |Lf | < 1 + |Lf |. So, replacing terms from above with things
that are at least as large, we have

|g(x)||f(x)− Lf |+ |Lf ||g(x)− Lg| < (1 + |Lg|) ·
ε

2(1 + |Lg|)
+ (1 + |Lf |) ·

ε

2(1 + |Lf |)

=
ε

2
+
ε

2
= ε.

Hence, |f(x)g(x)− LfLg| < ε. Because ε was arbitrary, we have a δ > 0 for every ε > 0, so
the limit exists and is LfLg.

Now, let us put these general theorems together for some more specific statements. These
are corollaries because they follow almost immediately from the theorems.

Corollary 1. For n ≥ 0 a natural number and a a real number, limx→a x
n = an. That is,

f(x) = xn is continuous at a.

Proof. Intuitively speaking, write xn as x · · · · · x and repeatedly apply Theorem 4, using
Theorem 2 to say limx→a x = a.

More formally, we will prove this by induction.7 For n = 0, we use Theorem 1 with
c = 1 to say limx→a x

0 = limx→a 1 = 1 = a0. Now, assume n > 0 and that we have already
proved limx→a x

n−1 = an−1. We can write xn = x · xn−1, so by Theorem 4, limx→a x · xn−1 =
(limx→a x)(limx→a x

n−1) = a · an−1 = an, since both of these limits exist, which we know by
Theorem 2 and by the inductive hypothesis. Hence, limx→a x

n = an. This completes the
induction.

Without the product rule at our disposal, imagine trying to prove xn is continuous at
any a! General theorems make our lives so much easier!

Corollary 2. Let a and c be real numbers, and f be a function with limx→a f(x) = Lf . Then
limx→a cf(x) = cLf .

Proof. By Theorem 1, limx→a c = c, so by the product rule, limx→a cf(x) = cLf .

We are basically done. As an exercise, using induction, one may show that limx→a(f1(x)+
f2(x) + · · · + fn(x)) = limx→a f1(x) + limx→a f2(x) + · · · + limx→a fn(x). This makes the
following corollary easy:

7The idea with induction is that, if you prove something for n = 0, and you prove it for some n given
the assumption it is true for n− 1, then you have proved it for all n. Imagine chaining all of the arguments
together in a list for n = 0, 1, 2, . . . .
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Corollary 3. Suppose p(x) = cnx
n +cn−1x

n−1 + · · ·+c0 is some arbitrary polynomial, whose
coefficients ci are real numbers. Let a be a real number. Then limx→a p(x) = p(a). That is,
p is continuous at a.

Proof. This follows from the extended addition rule and the corollaries above. In fact, this
proves that all polynomials are continuous on the interval (−∞,∞).

Hopefully this note at least gives some perspective on the structure of ε-δ-style proofs,
as well as the power of proving general theorems so that specific examples become easy.

Remember, to prove that a limit exists, assume ε > 0 is given, write down some δ > 0,
then prove that whenever 0 < |x − a| < δ that |f(x) − L| < ε. You may have to work
backwards to derive your δ, but to be a logically valid proof it must follow the order as
specified in the definition of the limit.

Exercises

Do not be discouraged by these exercises if they seem hard, because most are harder than
introductory calculus expects one to be able to do at this point.

1. Write down what it means for a function f not to have a limit at a. Think carefully
about what happens to each “for every” and “there exists.”

2. Prove that the the step function, which is defined to be 0 for x < 0 and 1 for x ≥ 0),
does not have a limit as x approaches 0. Do this using Definition 1, not by reasoning
about left- and right-sided limits.

3. Follow through the proofs of the theorems to extract a δ > 0 so that |cx − ca| < ε
whenever x is such that 0 < |x− a| < δ.

4. Do the same as in the previous problem, but with f(x) = cx2 instead. What about
f(x) = xn (at least for various small n)?

5. Show the negation rule: if limx→a f(x) = L, then limx→a−f(x) = −L.

6. Prove that limits are unique if they exist.

7. Find a counterexample for the converse of the product rule: find f, g such that
limx→a f(x)g(x) exists but either limx→a f(x) or limx→a g(x) does not.

8. Prove by induction that the limit of the sum of an arbitrary number of functions is the
sum of the limits of those functions, provided the limits of the functions exist.

9. Show that rational functions (i.e., quotients f
g

of polynomials) are continuous at all

points where g(x) 6= 0. Hint: first prove the reciprocal rule, that when limx→a g(x) =
L 6= 0, then limx→a

1
g(x)

= 1
L

.

10. (Extreme Value Theorem). Show that a continuous function f defined on some open
interval containing [0, 1] (all x such that 0 ≤ x ≤ 1) has a maximum value. That is,
there is an x ∈ [0, 1] such that for all z ∈ [0, 1], f(z) ≤ f(x).
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