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We give eight differvent descfiptﬁons of the Poinecaré homology
sphere, and show that they do define the same 3-manifold. The
definitions are: (1) plumbing on the Es grdaph, (2) surgery on
the E, Zznx, (3) the link of the singularity z? + zg + ag 0,
{4) S /I* where I* is the Dinary {cosahedral group, (5) the
dodecahedral space, (6) the Seifert bundle, (7) surgery on the
‘trefoil knot, (8) the p-fold cover of the (g,r}-torus knot, for

{prgsrt = {2,3,35}.

The dodecahedral space of Poincaré was established long ago
as a manifold of unusual interest, ‘both because it was the first
example of a homology sphere which is not a sphere and also be-
cause it lies in a class of three manifolds closely related to the

Platonic solids. Interest in the manifold has increased in recent
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years because of its surprisingly diverse applications to problems
in topology (see e.g.- {19, §21, {201, [(1s], (171, {211). Part of
the explanation for its usefulness is the large number of WaYS,
discovered over the years, to describe the dodecahedral space, Ii
is our aim in this paper to collect the most useful of these and
verify at an elementary level that all do define the same 3-mani-
fold. This paper arose from seminar notes in 1973 (and we thank
L. Siebenmann for'a substantial comtribution to that seminar).

We apologize for the untimely delay in appearance of this exposi-
tion, and remind the reader that since 1973, two excellent works,
{12] and [14], have appeared which include parts of this paper,

I. EIGHT DESCRIPTIONS

Deseription ! (Plumbing). Let P T4 > 52 be the contangent

2

disk bundle over §° = ¢ (this is just the ‘tangent disk bundle

with the opposite orientation so that the Euler characteristic is
-2). Over any cell 32 in 52 the bundle is trivial so there is a

commutative diagram
piEf) 2. g2, 52

o proj,
2

where ¢ is a diffeomor?hism.

Two copies I& and TZ of T can be "plumbed" together by iden-
tifying, for any {z,4) € 52 x 32, the points @EICr,yJ and m;I(y,xL
The fibers of the first bundle over 32 correspond to trivial sec-
tions of the second bundle over 32.

Let 7 be the result of plumbing together 8§ copies of 7 as

follows:
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Fig. 1.

i

After rounding corners, P becomes 2 smooth 4-manifold, The
first description of the dodecahedral manifold will be an. In
some of the future descriptions, we will recover not only an,
pur 2 as well,

Deserivtion 2 (Surgery on a link). Consider the link A'of 8 cir-
cles in 33, drawn in Figure 2. Each circle can be assumed planar
in &° =_S$ ~ =, $0 each has an obvious trivialization of its nor-
mal disk bundle (choose one normal vector field in the plane, ome
orthogonal to the plane). The trivialization t which we choose,

however, is one obtained from the first by rotating the normal
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disk at each 9§ ¢ Sl by an angle 2s. Attach 32 X BZ to 54 by

T 332 X 32 - 53 = 334. Since we may regard 54 as the trivial
2-disk bundle over a 2-disk whose boundary is the attaching cir-
cle, the result is a 2-disk hundle over 32. Since the framing
chosen differs from the standard framing by 2 full ieft handed
twists, the bundle has Buler cﬁaracteristic -2, and so ié the co-
tangent bundle of 5% = cet. '

Adjoin 8 copies of 5 « Bg'to Bé, one to each circle in
using the trivialization ;. The boundary of the resulting mani-
fold is the second description of 8P4. In fact, since a pair of
linking circles in & bound 2-disks in 34 which intersect at just
one point, it may be seen by inspection that‘descriptions 1l and 2
are equivalent, indeed that the 4-manifold just described is Pé.

With this description it is easy to compute wjfanJ using
‘the calculus of Crowell and Fox [2]. The group W1C53 = Al is gen-
erated by loops around each circle a, b, e, d, e, f, gs 7 with
relations for each crossing, ab = ba, Be = eb, ed = de, de = ed,
ef = fe, fo = gf, eh = he. The 8 copies of 5 x 282 attached to

- 4 provide 8 more relations 7 = a%p = ab?s = be’q = ed®e =

degfh = efzg = ﬁgz = ehz. By substitution e = a5 = g3 = h‘z and
h71-= ag, so we have generators ¢ and g with as = gs = (aglz.

This group {z,y; zg = ys = (yé)z}, has an independent history,

and is known in the literature (for reasons which will become _
‘clear) as the binary icosahedral group I*. I* is the only finite
group which can occur as the fundamental group of z homology 3-
sphere {8].

Deseription 3 (Link of a stagularity). Let f : 03 + C be the com-
i + zg. Flw) is a complex

variety which is non-singular except where afyazj =7 for all

o . .o e 2
plex poiynomial f(zl,zz,zsj =32, +z

Jd=1,8,3. Evidently the only singular peint is the origin

3, =2, = zz = 0. The intersection of the unit S-sphere about the

2 4
origin with this variety will also be shown to be 3P~
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Deseription 4 (The quotient SS/I*I. The icosahedron is a regular
solid with twenty faces, thirty edges and twelve veriices. It is
the dual complex to the dodecahedron. The group.r of isometries .
of the icosahedron (or dodecahedron) centered at the origin is
naturally a subgroup of SZ(3/, the group of orthogonal rotations
© of RS.

Let SU{2), the unitary transformatiohs of,Gz, act on 02 on
the right, that is, if u = (_%—3) , ag + Bb = 1, then
ulz,w) = (2,0l (;%-gq . This action of SU(2] on Cz comuutas with

complex multiplication, taking lines to lines, so it defines an

action on CPJ = 32 = CI ge, Ifu-= (_%-%) é SU(2), then for
z € CJ~U-w, u(z) = (z,1) (-%'%J =(az -0, ba + 3T = %g—ieg-.

Hence u gives a linear fractional transformation of ¢I y =, If we
identify C“I U w-with»sz by stereographic projection, these trans-
formations map onto SG(2). This map g : SU(2] » S0(3] defines a
covering projection which is 2-fold since q"l(identityi =
\(g‘g) U (-é _g) . (topologically this is the map & .m0
The 1ift of I to SU(2] is denoted I; we will later show that
I* is the group vI(aP4) calculated above. Since 3U(2) considered
as a map 34 -+ 24 preserves distance from {0}, SU(Z) acts on Ss.
(Later we will show that in fact SU(2) is 33.) The quotient of
53 by I* is the fourth description of aPé. Indeed, we will show
there is a homeomorphism CZ/I* -+ f'ICOJ above which is bihelomor-
* phic off of zero. '

Degeription § (Poincare’s). The dﬁal of the icosahedron, the
dodecahedron, is a regular solid with twelve faces, thirty edges
and twenty vertices (see for example, [3, p. 11]). Identify oppo-
site faces of the dodecahedron by the map which pushes each face
through the dodecahedron and twists it 2n/I0 = 36° about the axis
of the push in the direction of a right-hand screw. This identi-
fication is consistent along the edges (see [18]) and the quotient
space is a 3-manifold (this fequires some checking along the
edges). This 3-manifold is 3F°.
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Description 6 (Seifert bundle). 3P is a Seifert hundle over 57
with three exceptional fibers of ‘Seifert invariant (2,1}, (3,1)
and (3,1] and cross-section chstruction -I1. Equivalently 3P nay
be obtained by surgery with appropriate framings on any three
"anti-Hopf" circles in 3$¥.
Here we outline what this means (see [13], Chapt. 1). Let
M be anroriented'semanifold with a smooth circle action. Each
orbit o has a neighborhood diffeomorphic to 3’I X 82 (¢ corres-
ponds to S‘I x 7}, with slices g x 32, 8 € SJ, being taken to
slices. Thé orbit is principal if Sl X b is also an orbit for ail
be Bz. ‘The orbit is exceptional with Seifert invariant (n,2] if
its neighborhood could be obtained from the principal orbit case
by cutting SI X 32 at some slice g x 82, Totating the slice Zn/n,
and then gluing back together (assume the orbit followed by the
slice gives the orientation of #). Thus an orbit near an excep-
tional orbit goes'n times pérallel to the exceptional‘crbit, and
once around it; Sl pushes a point on the exceptional orhit »n times
around;heorbit. If dn : SJ X 332 > SI x 332 is a diffeomorphism
represented by the matrix (? -g), then cifn(S'Z x b} is the typical
orbit near an exceptional orbit. The action of g ¢ neax the
orbit is given by a(dﬁ(s,b)) ='dn(?-s,b),

Denote the quotient space M/S" by ¥. If there are only prin-

cipal and exceptional orbits, then ¥ is an oriented Z-manifold and
away from the exceptional orbits ¥ is an Sl fiber bundle over d.
A cross-section to the action on the boundary of a tubular neigh-
borheod of an (#,1) orbit is given by dn(s X 332). There is an
ebstruction in Ezfﬁ;wlfsl}) = Z to extending these cross-sections
to a cross-section to the circle action over all of Y-(exceptional
orvits). Choose a sigh for this obstruction as follows:

Let (j,%} denote a path going ; times around Sl and k times

- around aBZ. If, for some exceptional orhit, we choose as a cross-
section not dn(O,I) but dn(c,l), we say the obstruction changes by
¢. In particular, for some ¢, the obstruction to extending

dn(-c,I) vanishes; we call 2 the cross-saction obstruction.
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The.cross-section obstruction may'also be defined as fbllows.
Let o : Sl X 32 <, # be a tubular neighhorhood of a rznezval
orbit a(Sl x 0) so that the action at 8 £ SI is given by &(s,5) =
(8+8,b). A cross-section for the action is af@,1) then ¢ is the
integer such that o(-g,1) extends to a cross-section of all other
principal orbits, a cross-section which co1nc1des with d (2,1)
near the exceptional orbits. .

-As an example, let M = 53 be the unit sphere around the ori-
gin in C‘ One action of the c1rc1e on SS is given by A(z,w) =
{xz,2w), A € S'I cC, (z,w) € S < 03 All the orbits are princi-
pal; 1ndeed the quotient map is the “amti- -Hopf™ fibration
7 : 53 ad S » which is conventlonally oriented so that the Euler
class is #I. (This convention is motivated by the theory of com-
plex manifolds, in which the natural action of SJ on D , given by
A(z, w) = (hz,dw), (z,w) ¢ o? c Cz; may be lifted to an action on
the Hopf bundle by "blowing up" the origin in D4 replacing the
origin by a 2-sphere whose normal bundle has Euler class -I).

In general for X a bundle over Efwith no exceptional orbits
and cross-section obstruction e, the Euler class is -¢. Here, in
paerticular, is how to see that the cross-section obstruction for
the anti -Hopf circie actlon on 33 is -Z. Regard 53 as the union
(Sl x B ) Uf(Sl X B )2 of two solid tori by a homeomorphism
F: (Sl x 332) + (5% x 33 ) whose matrix is (g é) Let
(st x 5 ) have zero-section Sl {0} corresponding to the ‘axis
=0 for i=1and z = ¢ for i = 2. Let 8 ¢ .S”I act onAS'z X 32
by 9{(s,b} = (es,b) The anti-Hopf action of the circle on 53
restrlcted to (SJ x B )I’ is then a8 a 1, where
L I
( 1.

1
(

X

SJ X B ad (SI x 3 ) is the homeomorphism whose matrix is
?) " Then Fafl, 1) = {0,1) xhlch extends to the cross-section
Bz) over (S x Hence ¢ = -1.

To construct 3?4, remove three orbits from Ss (labeledl
. isely,
2,a3,a,) and sew them back in using az,d and d5 More precisely

construct
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CSJ - CaQUu3Ua5il u_ Sl X 82 Y sl x 32 v gt x 82
’ 2 I3 g5
where

g, 5 x B g5k (F g

is di X id(a 1] (we consider 82 -0 to be 332 x (2,11) and the do-
E

main of 9: is Identified with a neighborhood of @ i = 2,%,5 by

taking 57 x b to an anti-Hopf circle for each 5 € 3% _ 2. See

-

Figure 3.

Fig. 3.

Clearly this describes the above Seifert bundle, and, simul-
taneously, a surgery on a link in 33 Once again it is possible
to calculate the fundamental group knot- theoretlcally Let L be
the llnk of 3 Hopf c1rcles {(Figure 3}; then
" (52 - 1) = {z,y,zlx = y~ 1, l'wzy, ¥y =3 “Igm Tgxz, 2 ==z 13 yx}.
Each surgery kills the element corresponding to d (s,aB ), which
is a curve going once along @, and winding around a, 7 times com=-
pared to an anti-Hopf circle., Thus in figure 2, the curves wind-

ing around n-I times are killed and we add the relations
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il==z lzy =y zxz =2 "yz. Then x = zy and xz = y3 = zs, 50 the
*
fundamental group is again I .

Deseription 7 (surgery om the trefoil knot). Surgery on the left
_handed trefoil knot L (Figure 4) with framing -1 gives aP (this
trefoil knot is called left handed because the crossings corres-
pond to.a left handed screw). A knot bounds a smooth orientable
surface in 33, which determines z normal vector field to the knot
{tangent to the surface) and hence a framing (or trivialization)
for the normal bundle. This is the zero framing, and framing »
comes from twisting the O-framing »n times in a right handed di-
rection. If we push the trefoil knot off itself using the
framlng, we get a curve homotopic to the dotted curve ¢ in
Fzgure 4. A presentation for LE (Sz - L) is {a,b,e | ab = be = ca}.
Surgery kills the class represented by 2, so we add the relation
baca™® = 1. Since ¢ = blab = aba-l, we have (ab)3

(ab](bel(eal = (abel® = (a’51% = o®Gaba1a® = &P Buea ™21 ~a®
50 the group is I = 12, | a° = (@5)° = (& 514}.

ab = be = oz

r;-_'
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Description & (A branched cover). 37% is the 5-fold branched cov-
ering over the right handed trefoil knot /= (2,3) torus knotJ“.
Similarly it is the 2-fold branched covering of the (3,5) torus
knot and the 3-fold branched covering of the (2,5) torus knot.

Here is a brief description of the n-fold branch.éd cover of -
aknot X in 8°. X has a ‘trivial normal bundle. We will show that
. for scme trivialization_ of the normal bundle, 7 : 5’1 X Bz - 53,
T(SJ x J) = X, there exists a map f .5"3 - K> .S’Z, unique up to
homotopy, such. that “"Ti.SJ x 282 = Py ¢ st x 332 > 3B°. Let £
denote the total space of the normal circle bundle of Z.

Recall that for any space X, there is a natural isomorphism
IX,S'Z} =[X,X02,1]] =~ HJCX,Z.L._ Since, for F a fiber of the normai
circle bundle to X, inclusion induces an isomorphism
EZ(SS - X;2) .=:H'Z(F_;ZJ_, it also induces an isomorphism
[53 - &, S‘z] + [7, S‘I]. Thus a generator f of [33 - X, SJ]
carries 7 to 5% by a degree one map. But vai')ring the framing
r: .5'1 x 3. s? changes the degree of the composite
(S'z x b} -—z:a. E L SJ, be 332, by multiples of (degree FIFy =1;
hence we may choose T 'so. that (.5'1 x bl L E i S‘Z is zero. But
the map Py ¢ .5‘1 X 352 -+ 332 s-._Sl is also of degree on.e on
F o= (s x 38 and degree ‘zero on (5% x bJ.  Since the two maps
are homotopic on the l-skeleton of £, they are homotopic on Z.
Thus we may take T so that fi"].S‘Z x 33° =Py '

To define the n-fold hranched covering space & of X, let 7
be the bundlie over 5'3 - X induced by J and the n-fold covering of

L

7 o

Lol

I 7
ColBy QNN S S

The end of ¥ is homeomorphic to st x st X ®, s0 we can sew X back
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in to obtain the manifold L, The projection v defines a map

v -
Zn — Ss which is a homeomorphism on v 1(31 and an n-fold covering
elsewhere.

II. EQUIVALENCE OF THE DESCRIPTIONS

WQ will profe the following equivalences:

(5] <= (¢} <> (3] <= (8) <= (1)

P

(8] <==> (7} <= (2]

While several arguments are long, they are designed to be self-
contained. No deep theorems are required. '

A few words are necessary abou% orientations. A complex
manifold has a unique orientation (SU{n) is connected) and we use
this fact to determine a preferred orientation for aPé. The
variety zf + zg + zg = {0 is the cone on aP4 and 1f we reguire

(traditionally) that the first vector of its unique orientation
be an outward pointing normal to aPé, then we have oriented'aPﬁ.
If the.singularity is resolved, we get the complex manifold

int Pé which corresponds to piumbing disk bundles with Euler
characteristic -2.

If two complex linear subspaces in c* intersect at a point,
then together ﬁhey must give the unique orientation of Cn, 50
algebraically their intersection must be #I. Thus the Hopf c¢cir-
cles in &° (which are the intersections of complex lines in c?

with 53), must have linking number +I &¥ ; also Rs has the usual
3

g

=g (ot zf = zZ}
9 Y
in 7 meets 33 in the right handed trefoil knot (2,3 torus knot}.

right handed orientation. The variety z? +-2

On the other hand, -3P4 bounds a complex manifold, the handle
4
body obtained by attaching a 2-handle to 5 along the right handed
. 4
 trefoil knot with framing +1. This complex manifeld union 7~ is
o 4 i o7t |
oP° # E(- CF)
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The most useful reference is [13] which contains proofs
(buried in more general theorems) of the ‘equivalences
-(1!<=a(3J<=9(4)<=*(6); our proof of C3I<=>(8} is taken from (12},
which also contains a somewhat different proof of (le=(4). A
proof of (5)<=>(4)<=>(3; <=5 (7 for a more general class of mani-
folds can be found in {41, [14] contains equivalences.

(2]<=>(7)<=>(g].

Equivalence of desoriptions (4] and (5): First we describe how to
picture SS/I*, then provide a proof that indeed Sg[I* is the
dodecahedron with opposite sides identified, Imagine the follow-
ing circular chain of dodecahedra: place one dodecahedron on one
face on the table, and then place nine more on it to form a tower
with each dodecahedron rotated n/5 around the vertical axis com-
Pared to the one just below it; then identify top and hottom.

Take another copy of this circular chain and Place it adjacent to
the first, at a slant of 360, and winding once around the first,
like a pair of Hopf circles. In this way wind five circular chains
about the first one. 1In RS these do not fit perfectly together,
but in $° they do. Note that it makes no difference which way
they wind, Take two copies of this and sew. them together the way
one sews together solid tori to get 5%, '

Thus Ss is decomposed into 120 dodecahedra whose centers can he
taken.to be the elements of I*. These elements permute the dode-
cahedra; in particular there is an element of I* which pushes our
original dodecahedron up ome in the tower, identifying kottom and
top of the dodecahedron. Similar "towers" through the other ten
faces lead us to identify all opposite pairs of faces.

In order to prove that the fundamental domain of.I% is indeed
the dodecahedron requires an analysis of how SU(2) acts onm 53. We

assume that SU(2) acts on 02 on the right, that is, if
a b _ a b

“=\ - _ ], a2 *bb =1, then u(z,u9) = lzyw) | _ ). Identify
C\-% 2z -0 a
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-5 a

a b :
SU(2) with the umit 3- sphere in el by taking ( __) to (a,di.
Thus 53 acts on itself; we want a simple geometric picture of this

action.

The complex lines in 02 intersect only at the origin, so the
complex lines 1ntersected with 35 5% give a decomposition (foliatien)
of 33 into c1rc1e5 (These circles are also the orbits under the
circle action A(z,m) = {z, ), X € st < C.) By sterographic

3 with 53 U =, with coordinates (r,s,t) on

rrojection identify S
RS. Assume the complex line w = ¢ (the z-axis) intersects 33 in
(peaxis | =) =-SI and the line z = ¢ intersects 83 in the unit
circle 53 in the (s,t) plane; in particular (1,0,0,0) in 53 goes
to (0,0,0) in 33. The other complex lines intersect 53 in the
following kinds of circles; the complement of S U 52 in S3 is a
union of "concentrie" tori (since s? is the join of S and 32)
Each torus is the union of disjoint circles obtained from the =45°
lines in the square by identifying opposite sides of the. square in
the orientation preserving way. In particulaf, we orient these
circles continuously so that 32 is oriented consistently with the
usual orientation.of the (gt)-plane and SI has the same orienta-
tion as the z-axis. (If we think of 52 as the unit disk in the
{gt)-plane with 32 collapsed to a point, then each circle inter-

sects 52 exactly once; this defines the Hopf map ¥ : 53 - SZ.)

Armed with this picture, the action of lg g.) g sucz).
;
A g€ 8 o, is easy to see. It twists the circle SI by an angle

A, and the circle 5, by the angle X; the orbits of the induced
action on the tori are perpendicular to those of A.

: . s 3 . i o
There is, for each circle S in §° and point » in 5, a copy of

4 X : . e -
33 in E° perpendicular to S at p. The intérsectidn with 55 of

this perpendicuiar 33 will be called the perpendicular sphere at

p in 3. Clearly (2 %) carries the perpendicuiar sphere at p in

S, to the perpendicular sphere at Ap.
In general, =n = 2 2) can be described similarly. It is
& =7 T

the product of rotations through 4 in the real plane I spanned by

u
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(1,0) and (a,?) and its orthogonal complement L This can ke
seen as follows. If a=a+ 28 and P = Y + zG then the embedding
t o SUC2] -+ 3004) gives

a 8 v\
iw) = "8 @ R
-y 4 G -3
=-§ -y g8 o
with a2+82+y2+62=1.

With respect to the basis

1,0, 0, 2, {0, &, 0, -2} |

u u
Y & ) -y 8§
(a,u,m,w (0. £, L, a8y,

whete = /1 - alandy = VI ,

o /1— & . g
—./I-ag a ]
z{u)
' a g o
0 0 V-0
and cos § = o = Re{q). Thus u (or any other element of L n S )

defines a Hopf 1ike decomposition of .5'3 into circles.

Let S be that circle in 5'3 which in 33 is the line
T . (5, ;-JL, f— s T € R, Here (;S-_, g—, :—) is the image of
(1,2,9) under the change of bhasis, so 5' is the image of 5' Ac-
cordingly, wu carries spheres perpendlcular to S to other such
spheres,

We now embed I* in 8U(2) as described above, Place the

dodecahedron with center at ¢ < RS so that the barycenter of a
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face is tangent to 52 =C |J = at the point (1,4,4) in 33; which
corresponds to the point £ in ¢ under stereographic projection.
Tw1st the dodecahedron by 2n/3; this element 9, corresponds in C
to multiplication by lg, where A = e“°/ » Or, equivalently, to the
linear fractional transformation whose matrix is (A 0) . Thus

Ao 9 %

g, is covered by (0 'T) in 5U(2). We have examined the action of

such an element on 5°; it maps the sphere perpendicular to
-%t/10 : Tt/10

e € Si to that perpendicular to e . Thus the ZIO sub-

group of SU(2) covering the rotations.of the dodecahedron about
(1,0,0) has a fundamental domain the reglon lying between these
two perpendicular spheres~-a lens shaped region (which gives its

name to the Lens space S /ZZOJ'

Now let 2 = u + iy be the barycenter of another face of the

dodecahedron tangent to §° = CU® Letp=v? 423 =1+ (u2+02)
and note that the linear fractional transformation carrying 0 to
2 is given by the matrix.

1 -3

4= ° e .
z 1
- p f

The 27/5 twist about this barycenter, denoted g ,» then corres-

A O)Aﬂl in 5U(2). Let A = e + if, and de-

g i
note, as above, the entries in the matrix image of A(g .%)A in

5004 by a,B,Y,S An easy calculation shows that o = g,

8 = #0002 - %, v*—%,ﬁ—ﬁ%-
As before, let S ge a c1rc1e in 83 such that S N R

B(8/u, v/u, 8/u). Then g, carries spheres perpendlcular te Sz to

ponds to a matrix 4 (

other such spheres. In this case p = l& - 92 =7

(2, x 8o (2, &
w2l tu/ T p2 T2 p2 ’

But the coordinates of z in 7’ under stereographic projection are

2=’ o '
2 * 2° 2 '
o] ol P

[ ST o)
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Comparing the two vectors in R3 we deduce (after the orthogonal
rotation which switches the last two coordinates) that rotation of
the dodecahedron about the barycenter at z lifts in 5U(2) to the
Same action as rotation about the barycenter at 2, exXcept the axis

- ]
in R

of the translation of 5° now points through z instead of
through (1,0,0).  Thus the axis of the (lens-shaped) fundamental
domain of g, passes through z. The intersection of al] thg funda-
mental domains of all rotations about barycenters of faces is then
the intersection of those lenses whose axes point in the direction
of the barycenters. But this intersection is precisely the funda-
mental domain of I*, since it is €asy to see that all elements of
I are compositions of rotations about barycenters of faces. But
the intersection of these lenses is clearly the dodecahedron,
Furthermore, we have seen that the action of I* on 53 identifies
opposite sides of the lenses {hence of the dodecahedron) with a
/5 twist. This completes the proof,

Incidentally, it is'possiﬁle to explicitly ecalculate genera-
tors and relations for I* by using description 5} for 3P, as in
(18]. This is then 2 roundabout proof that = {(x,y)|x3 = ys =

‘fzy) 2}.

fquivaience of deseriptions (3) and (4). The proof is 2 medley

of [12] and (10]. oOur aim is to find a homeomorphism
P CZ/I* -~ f'Z(OJ where f : & s Cis f(zz,zz,as) =z
We will find three homogeneous polynemials pl, Dos Ps
and define 7 = (pz,pz,ps) :cf - . We m&st show that

- 23 § .

+ 2_.
2 3
Py

2
)
(i) P is invariant under action by I' so that P defines
P Cg/I* - 3.
(ii) p7 + pf * p§ = 0 so that image (P} < f‘zra).
(1ii) d%'hasdrank 2 on Ca - ¢ and thus P (CZ/I*)-O is a cov-
ering map.

[\

(iv) 5"‘(point) = 180 points; so P is one-to-one and a
homecmorphism,
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eH Q
10 elements £
: 0 azu
0 _Ezu
10 elements %
8311 a
-53(u+w)( 4 g3(tu-u)(22_53) .
1 g~e”)
50 elements: *# — :
/5 Slumu) 2 3 =3luta) 4

] |
(il B3y ¥lutalo 4

50 elements: t.—l—
Y5 Bkl 4y Blemu) 23
This yields the polynomials
Py = -(1728)1/5 zzzzfzia Ilzgzgr- zga)
p; = (zio + zga) + 522(2?5 zg - zjzgsi - 10005(3?0 ziy 320_1
Py = —(z?a + z ) + 228(3"5 z; - zshzés) - 494z§0 zéo . |

I

The reader may verify directly that p? + pg

+ pg = g, but the fol-
lowing argument is both more elegant and requires no calculation.

Consider the complex vector space V of homggeneous polynomials

of degree 40; 7 has dimension §1, with basis z. zga‘t,
i =0, ---580.  There is a I-dimensional subspace

V= 1Ap3 + upl} -for A,u € C. Given a barycenter (g,>/
of a face of the icosahedron, the annihilator 4 of the l-dimension-

al subspace az -bzl = J has dimension §0. Thus dimi¥ ) 4} > 1,

g
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so for some fixed A and U, 1ot both zéro, (Apg + upf)(zl,zgj =g
if az, - bzz =4. :

The orbits of points in CPI under the action of I are of four
types:

(1) the 12 vertices of the icosahedron

{2) the 3¢ barycenteré of edges

(3) the 2& barycenters of faces;

(4) orbits coﬁtaining 60 points.

*
Since Pys Py and P are invariant under I , it follows that

the zeroes of lpg * up? must consist of complex lines through en-
tire orbits. Suppose there are w, orbits of type %, i = 1,2,3,4,
'in the zeroes of kpg * up?, multiplicities inciuded. Then degree
5 %) = 50 = . ) 5 2.
(lp3 + upl) = 50 = 12@1 + SOmg + 20m3 + 50w4. S8ince Aps * upy is
zero on the complex line through a barycenter of a face, it follows

that iz # 0, but then Wy = 3 and w 0. Thus

1T Wy Ty =
'lpg + upf has the same zerves as pg, s0 Apg + up? = vpg. We re-
define Pz to be the old pa‘divided by AH/5 and so on, so that
pf * Pg f Pz = 0. We have now satisfied properties (i} and (ii).
To show that B : ¢% 1) or p : ot s ) is locally
bihilomorphic off zero, it suffices to Prove that the matrix

;0 iy g

321 azl Szz
dF =

Bzg 332 322

has rank 2 everywhere. Note that
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98, s
le Bzz
A2 = determinant
apI . ap_s &
_332 Szz

is homogeneous of degree 49 and is invariant under I*; therefore
it can be zero only on the complex lines through the orbit of
points determined by the twenty faces of the icoszhedron. The
other determinants are zero only on the lines through the vertices
or barycenters of edges, so 4P has rank 2 except on zero.

The map P is propér since Pys Py and ps'are.polynomials.
Therefore P(C® = 0) is closed in J"'I (0) - 0. 1t is also open be-
cause P is locally a hoemeomorphism. _ Since f"z (@} - 0 is connected,
P and P are onto. Thus P : C'Z/I* -0~ f-l(o) - 0 is a covering
Space.

Finally we must show that F -I(point) has 120 points; then
P is one-to-one and so a homeomorphism. Since order (I*) =120,
?"z(point) > 120 points. Consider (a,b,0) ¢ f’;(d), (a,b) a ver-
tex of the icosahedron. ps(zz,zzj =0 has the usual solution, 12
lines. On each line, Py and Py restrict to polynomials in one

variable of degree 30 and 50 Tespectively. The solutions of
30
z

1

=a and'z.zo = b are the vertices of a regular 30-gon and
20-gon fespectively. So there are at most 10 coinﬁ'mn solutions on
each of the 12 lines, so P 'I(a,b_.OJ. < 120 points. This finishes
the construction of the homeomorphism P : C'z/l'* - f.l (a7,

The reguired homeomorphism ¢ .5'3/1'* - f'l (0) n Ss is defined
as follows. For sach z ¢ 3‘3, let R < 2 g be the tdy through
2. 1£y € I,(z) then &, € 1,(R); thus 2(R) is well defined.
Furthermere, since pl, Py and py are homogeneous polynomials, as
the distance from the origin to a point ¢ on Rz_ increases, so does
the distance from the origin to Pr#). Thus P(Ez) n S‘S is one
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- point, which we cail g(x). @ is clearly smooth and one-to-one; it
is onto sinece P is. '

Equivalence of descriptions (3) and (8). We will define a circle
action on the link I of the singularity zf + zg + z§ = {, an action _
which gives I the required Seifert manifold structure. For
T e st el C, let 7(21,32,33) = (st zl,ylazg,ya 33). Clearly this
circle action on CS leaves L invariant.

The orbits of SJ are principal if all z, # 0, for if
Y(zz,zz,zs) = (31,22,33) then YS = ylg = YIS = 1,_50 Yy =1. The
=g,
2,0) 50
Z; < 5t acts trivially on the orbit. Furthermore if w € 57 satis- .

exceptional orbits are the three orbits 2, =0, 2, = 0, Bz

acts on the orbit a; = 0 by ‘Y(zl,zg,w = (5 410,

fies w5 = 1, then w acts on a disk perpendicular to the orbit via

complex multiplication by (mﬂs = w. Thus the orbit is exceptional
of_typg-(5,1). Similarly 2y = t.')‘.J 2175 ¢ are_extgptional orbits of
type (3,1) and (2,1).

Next we show that any Seifert manifold ¥ whose only excep-
tional orbits are of type (2,1), (3,21) and (5,1) and which is an
integral hemology sphere is a Seifert manifold with quotient space
52 and cross-section obstruction -7. This will complete the proof,
for we know from the equivalence of 3 and 5 that
T (L) = {2,y 2% = ys = ryz)-z} s0 El'(ﬁ) =0,

First note that if the quotient space X of ¥ by the circle
action is of genus g, then the first homology of the (trivial]
circle bundle obtained by deleting the exceptional orbits has
rank 27 + 3, Sewing back the 3 exceptional ordits can at most
decrease the rank to 23, because sewing in a copy of SI b4 32
adds only the'relation corresponding to s x 332. Thus g = ¢
and ¥ = 32.

To calculate the cfoss~section obstruction b, construct a
presentation for nZ(&U as follows. A cross-section for the circle
bundle away from the exceptional orbits is a 3-punctured sphere
with fundamental group {ai,qg,qs; 9;9943 = 1}, where each 9; is a
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path around an exceptional orbit. Let L & wl(M) be represented by
a principal orbit.

Let (7,k} denote the path in .5"z X aBz which goes J times
around 51 and * times around aBZ. Attach the exceptional orbits
by di.’ i = 2,3,5. We may assume that dz(-c,l) = s dgfa,l) = 4y
d5(0,1) = 45 But di(l,i)'= {3,1) which is null-homotopic in
s x 32. Thus adding the exceptional orbits introduces the rela-

tions d,(1,2) = 0. Thus Qf = dy(-2e,2) = dy(~2e-1,0) = n2ed,
qg = d.(0,3) = d(-1,0) = W, qd = dg(0,8) = d,(-1,0) = nt.
2 ., 3e+l

, - . 3, _ &5 _
‘Thus ertM) = {qr_‘.l_,qz__,q",j,_,J’L,qI h. g h = 93 o= [q?:_,h] =

. . -1 ‘5
q1q2q3_= 1. Eliminate a4 by q; = (qzqs) ~and h by k = a,

and abelianize to obtain
HIKM) = {qg,qs;qu + (e + 5)q2 = b'q3 - qu = g},
Thus HI(M) is of order

o + 5 2
det = 30a + 25 + 8.
-3 8

Siace &, (M) =0, ¢ = -1.
Equivalence of descriptions (6) and (1). Examine the structure of

A .
the plumbing construction P~, 8 copies of the cotapgent disk bun-

dle T plumbed together as shown:

-

.This may be viewed as plumbing 3 "arms'" of length 4, 2, and

4 .
1, to the central TO’ That part of 3P 1lying in each arm has a

4 .
very simple description. In particular, TI i 3P7 is an Sl fiber .
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bundle over 32 with neighborhoods of two fibers removed. But re-
moving two fibers leaves a tr1v1a1 bundle, s0 T al 3P4=-.5‘1x31x;_
for £ = 1,2,3,5, and T n BP‘ Sl X B for j = 4,6,7. Thus each
arm, consisting, for example of U T U T ] Ta’ intersects
in a copy of S 57 X BZ Hence aP is obtalned from azb by removing
three tubular nelghborhoods (S’Z x g } of fibers in aTb and, to
each (SI X aB /) boundary component, attachlng a copy of Sl X 82 oy
some (linear) attaching map g. : (SJ X aB ) - Sl X 332

There is a natural circle action on aTa, 1n which the c1rcle
acts on each fiber by rotatlon Remove (SJ X B ) 2 =1, 2 3 and
attach three copies of st x 3B% by {g }. The action on (.S’I X 32
extends linearly over each attached Sl X Bz, S0 the cirele action
extends over 3P4 We will verify that this cirele action gives

the required Seifert manifold structure by calculating g;

- LEMMA 1. The attaching map g : KSJ X 3B ) + 5 x 28% jor an carm
of length m > 0 is given by tke matriz

n

2 z m+1 m

- 0 -m It

Proof. This is certainly the case for m = 0, that is,. for 3T, it-
self. The proof is by induction. Suppose it is true for an arm

of lemgth m > 0.

Let qﬂ denote the copy of 7T at the end of the arm to which we
. -2 e i -
plumb Qw+1. Since ;w+1 has Euler class -2, it is made from two

a7 g . 1
charts, (32 x 87} and (82 X 32) , and we identifyfszx 332) with

2 . 2,2 . 2, 2,1 2 .22
(B” x 3B°) wmy extending the map (38 x 35°) -+ (38° x 3B J -given

o8y .. md sl d .
7 _1) linearly across (B° x 35%) . Plumb L

2 : : 2.8
J . Then a copy (Sl x B%) in BE% is identified

by the matrix ( in

along 2% x 3%
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1
with (BZ xsaBg) by switching factors, so the attaching map
(Sl X 332) - (aBz x 382) is given by the matrix (g é) . But' by

induction hypothesis, the map (Sl x 332)£ ~ (5% x 332)3 is given

2 1 a

& . o 2 o 2,4
by . Thus the attaching map (5 x 387/, + {5 x 387)

-1 0
is given by

(1 2) (0 1) (2 z)”‘ (2 1)’“”1
\g -2 1 9 =1 ¢ -1 0
proving the lemma. |

LEMMA 2. Each arm of length m attached to T, adds an exceptional
orbit of type (m+l, 1) and decreases the eposs-section obstruction
by one.

Proof. The proof is based on the matrix identity
<m+1 m (l 0 m+1 -I) (1 1)
o lem a2 /N1 o \o o o1

Thus from Lemma 1 9; is the composition of three automorphisms

(Sl x 332)*: . The first, represented by é i
on the circle action, but changes the cross-section (0,1) to (1,1}.

has na effect

The second automorﬁhism is just %ﬂ+1‘ The original cross-section
obstruction ¢ is the obstruction to extending the cross-section

. i X i 1) ise - 1.
4ﬂ+1(1,1) Then the obstruction of e tenélng 4m+1(0’ )Jise -1
Thus the composition

m+1 -1 : 1
1 0 g 1

represents the addition of an eiceptional orbit of type (m¥I, 1),

and a decrease by I in the cross-section obstruction. The third

Al
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automorphism, represented by ( ; f) extends to an azutomorphism
gt X 32+D and thus has no effect on the homeomorphism type. This
proves the lemma.

Since BP is obtained from 7_, which has cross-section ohb-

“g
struction 2 (Euler class -2), by attaching arms of length 1, 2,
and ¢, it follows that the cross-section obstruction is -7, and

cP has exceptional orbits of type (2,1), (3,1) and (5,1,

Bquivalence of deseriptions (1) and (2). The equivalence of des-
criptions (1) and (2) follows from the definitions; see definition
of {2) above.

Equivalence of descriptions (3) and (8). We sketch the proof of
Milnor [12]. The torus knot of type (2,3) is the knot which wraps
around the standard torus in 33, twice in one direction and three
times in the other. In other words 1t 13 the image in 53 c 2 of
the circle 57 < C under the map * ——-(t 4 l. This is the inter-

I!

section of 5° and the variety {(31,32) ¢ c? ] 32 g}

Let L be the link of the singularity zf * zg + 25 =0, and ¥
be the 5-fold branched cover of the tref01l knot,

. 3 5 _ .

Evidently V = {(zz,zg,zgj € Gs - alzl +* Zg + zg = 2} is the

3:
2

@}. Indeed the projection (a.,zD,z /- (z,,z J is a 5-fold cover

S5-fold branched cover of 6’2 - 0 along 8 = {(zl,zglecz-a[zf-f-z

away from 32 + zg 0 corresponding to the 5 roots of zs_# a,

1 &
but is a homeomorphism when zf * zg =0 = g & acts on ¥ and
2 e
Cz =7 by t(z,,zz,zgj = (¢t /2 z _/a, 178 ) and ¢(z.,2,] =

1’ Ggr
/e, /8 . . s s
¢ 24, 32). ‘The action commutes with projection. Since

each orbit of R+ intersact L precisely once, V/F+.a L., Similarly
& - 0/R+ = 53 and the induced map I - 53 is a branched 5-fold
COVer over 3/R+ 2 trefoil knot.
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Equivalence of daseriptions (2) and (7). We need to show that do-
ing surgery on the framed link A of (2) gives the same 3~manifold
as doing surgery on the left handed trefoil knot using the -7 fram-
ing. '

The first author shows that two framed links A and A' yield

the same 3-manifold if and only if they are related by a series of
link operations of two kinds [91:

CE : Add to or subtract from a link an unknotted circle with
framing £I, which is separated from the other circles by an embed-
- 2 . .3
ding $° in §7.

_ 62 : Given two components Yy and s of. an oriented, .fra.med
link, push s off itself, using its given framing, to obtain yi.
7 by a stripd : Ix IC»,S'3 such that 5(IxI) N Yp =
b(i x T), £ = 0,1. Then substitute for Y, and g thg circles Y£
and ') #sz =¥,V YI_U b(I x aI) - b(3I x I).

The framiqg for y£ is the same as that for y,; that for

Join g and y

Yy #byl is the sum of the framings of g and e plus or minus
twice the linking number of Yy with Yo The sign is plus if and
only if b(I x I) can be oriented consistently with g and IR

The full strength of this theorem is unnecessary. Here we
use only the "easy' part, that if two links are related by Oﬁ and
Gy then the corresponding 3-manifold are homeomorphic. Indeed,
67 corresponds to taking connected sum with or splitting off a
c;py of the complex projective plane * CPZ, with one of its orien-
tations, from the trace of the surgery. This follows immediately
from the fact that * CP° - (¢-disk) is the Hopf disk bundle over
82 with Euler class #I.

Gﬁ corresponds to sliding the Z-handle attached along_yg {in
the trace of the surgery} across the 2-handle along ITR
LEMMA 3. If we change a portion of a framed link as in Figqure §
below, them the F-manifold resulting from surgery is not changed.
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— f— : ' Left op
Yo Full twigt

| T

If + has framlng 7 in the left case, then it will have framing

Fig. &,

£ (E(ya,yll in the right case.

The proof, given in {9], is a straightforward appllcatlon of
&y and Ggs and can be worked out easily by the reader for one or
two strands through Yoo

- By a series of applications of Lemma 3 we change the framed
link A to the -1 trefoil knot. First we introduce three unknots
with #I framing (C§) and then slide the end circles of A over them

QORI

+1

fay
. ‘;S.
o
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Then we remove the -7 circles, using the lemma until we get

QLD

+3

Fig. 7.

Removing the +I circle, we get

Fig. 8.

Blowing down the #2 circle gives

Fig. 3.
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. And one last application of the lemma finishes the proof.

Fig. -10.

Equivalence of descriptioné (7) and (8): We will find a handle
bedy or surgery description of the 5-fold branched cover of the
right handed trefoil knot X. First we perform a surgery om an
unknot J with framing 1, so that §° is the result. But if the
unknot is chosen éppropriately, K is unknotted in the new.Sg (see
Figure 11}. 1t is easy to see that the 5-fold branched cover is
sti]l 33, but ;he curve J lifts to 5 copies, Jﬁ,...,Js, whose
framings can be calculated from the formula

5 5 5
Y317, 1a) = 7§ RT3 ) = 5 (J,7) = §
(1:=1 Y o=z ") i,4=1 ¥

which implies by symmetry that

5
1T, T = 1.
=z 10
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C UL

QS
& - feld
M . cover 73
J J
1

2
Fig. 11.
_ We see by inspection that 2(J J) = E.(J sIgl =1 and
Q(Jj,Js) = Z(J J } = ¢ so that 2(J J } = =1 and hence

-I. The point now is that 1: surgery on J -in S3 gives

]

z(J,'-,Ji}
X in SS, then surgery on J,,...,J 5 gives the S-;old branched cover
of X. To see this surgery, we apply Lemma 3 several times, first

to say, Jz_and J4, obtaining
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Fig, 12,

then to JS’

Fig., 13

and finally to, say, J3
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(>

-1

Equivalence of deseriptions (8) and (2) or (7). We have seen in
description (6) that the Seifert surface is equivalent to surgery
on 3 anti-Hopf circles (Figure 3) with framings 1, 2, and 4. But
exactly this framed link turns up while showing that descriptioms
(2) and (7} are equivalent,

ITI. OTHER POSSIBILITIES

“The equivalences .proven here are not necessarily the most
direct paths between two points. The interested reader would find
it quite rewarding to.construct shortcuts. Here are some which
exist in the literature.

The equivalence of (1) and (3] can be seen by resolving the

3 3 s

singularity 3, F 3, F 2= 0. In fact, the minimal resolutipn of

4
f + zg + zg = (¢ is a complex manifold homeomorphic te P°. The

resolution of the singularity is explicitly done in [11, p. 23-27L

-4

‘Perhaps a more piquant approach, through, iIs to use the more gen-
eral theorems on resolution of singularities found, for example in
~[s8l, (7], (1}, [15], to discover the connection between the reso-
lution of those ‘singularities corresponding to the platonic solids
(e.g., the dodecahedron) and_the Dynkin diagrams used to classify
semi-simple Lie groups. '
In [16] the second author sketches a proof of (8)<=>(7)
by studying the cizcle action on 52 given by YCzI,zzj = (73zl;y222L

The trefoil knot 2, + zg = ¢ is an orbkit of this action.
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A Heegard splifting for aP4 is drawn on page 19 of [5] and on page
245 of [14]. The latter shows that his Heegard splitting coin-
cides with our description (7). The reader can construct nis own
Heegard splitting via, say, the 2-fold branched cover of the
{3,5]-torus knot X. Note that we can decompose el into two
32 X I's such that for sach one, we have (32 x I) n (83,37 B
% x 1, (r- L0 x Dyt sy ((%,0) x I)}; the 2-fold
branched cover of 3% x I over 3 unknotted strands is the solid
2-holed tdrus, i.2, 33 U (two l1-handles). what remains is to
""see” the homeomorphism by which the two are glued together.
Deseription (8) for BPQ can be extended to give a definition
of #° as a p-fold cover of 84 branched over a certain Seifert sur-
face of the (q,r)-torus knot, {£sq,7} = {2,3,5}. The surface is
obtained by pushing into 5~ the fiber of the map 83 - K - Sl given
by {z,w) -+ (zq+wr)/}zl+wr[, (z,wl ¢ 02._ A Seifert surface for
the (3,5)-torus knot is drawn "in Figure 15, Its double branched

cover is exactly Figure 2.

COMIDOC

o -

Fig. 14.

If we take the usual Seifert surface for the right trefoil
knot, Figure 16, push it into 3% and take the 5-fold bramched
cover, we get Figure 17. $, Akbulut and J, Harer pointed out this
description; it occurs naturally as a complex submanifold of the

Kummer surface. It is not hard to slide 2-handles over Z-handles
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to get from Figure 17 to Figure 2, We leave a description of the

3~fold cover to the reader.

anvs

Fig. 18.

Fig. 17. The -1 means one Full left-handed twist. FEach
eirele has Froming -2,
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