SMOOTHING LOCALLY FLAT IMBEDDINGS

BY R. C. KIRBY

Communicated by E. Dyer, August 23, 1965

The fundamental imbedding problem for manifolds is to classify the imbeddings of an n-manifold into a q-manifold under ambient isotopy. We announce here that the differentiable and topological cases of this problem for differentiable manifolds are the same if \(2q > 3(n+1) \) and \(q \geq 8 \).

This follows from Theorem 2 below which states that a locally flat imbedding of a compact differentiable manifold \(M^n \) into a differentiable manifold \(\mathbb{Q}^q \) is ambient isotopic to a differentiable imbedding if \(2q > 3(n+1) \) and \(q \geq 8 \). Since this ambient isotopy may be chosen arbitrarily close to the identity map, the set of differentiable imbeddings is dense in the set of locally flat imbeddings of \(M^n \) in \(\mathbb{Q}^q \).

It will then follow that two locally flat imbeddings of \(M^n \) into \(\mathbb{Q}^q \) are ambient isotopic if they are homotopic; hence the classification problem reduces to a problem in homotopy theory.

Theorem 1. Let \(f : B^n \to \text{int} \mathbb{Q}^q \) be a locally flat imbedding of the unit n-ball into \(\mathbb{Q}^q \). Such an \(f \) always extends to \(f : \text{int} \mathbb{R}^n \to \text{int} \mathbb{Q}^q \). Let \(C^{n-1} \) be a compact differentiable submanifold of \(\partial B^n = S^{n-1} \), and suppose that \(f \) is differentiable on a neighborhood of \(C^{n-1} \) in \(B^n \). Let \(q \geq 7 \), \(2q > 3(n+1) \) and \(\epsilon > 0 \). Then there exists an ambient \(\epsilon \)-isotopy \(F_t : \mathbb{Q}^q \to \mathbb{Q}^q \), \(t \in [0, 1] \), satisfying

1. \(F_0 = \text{identity} \),
2. \(F_t f \) is differentiable on \(\text{int} B^n \) and on a neighborhood of \(C^{n-1} \) in \(B^n \),
3. \(F_t = \text{identity on } Q - N_\epsilon(f(B^n)) \) and on \(f(\text{int} B^n) \) for all \(t \in [0, 1] \),
4. \(|F_t(x) - x| < \epsilon \) for all \(x \in Q^q \) and \(t \in [0, 1] \). \((N_\epsilon(X)) \) is the set of points within \(\epsilon \) of \(X \).

Theorem 2. Let \(f : M^n \to \mathbb{Q}^q \) be a locally flat imbedding such that either \(f(M^n) \subset \text{int} \mathbb{Q}^q \) and \(q \geq 7 \) or \(f^{-1}(\partial \mathbb{Q}^q) = \partial M^n \) and \(q \geq 8 \). Let \(2q > 3(n+1) \) and \(\epsilon > 0 \). Then there exists an ambient \(\epsilon \)-isotopy \(F_t : \mathbb{Q}^q \to \mathbb{Q}^q \), \(t \in [0, 1] \), satisfying

1. \(F_0 = \text{identity} \),
2. \(F_t f \) is a differentiable imbedding.

1 This is an announcement of a portion of the author's dissertation at the University of Chicago written under Professor Eldon Dyer.
(3) \(F_t = \text{identity on } Q - N_t(f(M^n)) \) for all \(t \in [0, 1] \).
(4) \(|F_t(x) - x| < \varepsilon \) for all \(x \in Q^s \) and \(t \in [0, 1] \).

The proof follows from Theorem 1 by considering the handlebody decomposition of \(M^n \), and smoothing the imbedding of one handle at a time.

Only imbeddings of \(M^n \) into \(Q^s \) satisfying \(f(M^n) \subset \text{int } Q^s \) or \(f^{-1}(\partial Q^s) = \partial M^n \) will be considered. Let \(T \) be the set of equivalence classes of locally flat imbeddings of \(M^n \) into \(Q^s \) under equivalence by ambient isotopy. Similarly, let \(D(C) \) be the set of equivalence classes of differentiable (combinatorial) imbeddings of \(M^n \) into \(Q^s \) under equivalence by ambient diffeotopy (ambient combinatorial isotopy). Let \(H \) be the homotopy classes of locally flat imbeddings of \(M^n \) into \(Q^s \). \(H \) is a subset of \([M^n, Q^s]\), the homotopy classes of maps of \(M^n \) into \(Q^s \). Then we have the following commutative diagram where the maps are the natural projections.

\[
\begin{array}{ccc}
D & \xrightarrow{\pi} & M^s, Q^s \\
\downarrow & & \downarrow i \\
T & \xrightarrow{\beta} & H \\
\downarrow & & \downarrow \gamma \\
C & \xrightarrow{\rho} & [M, Q] \\
\end{array}
\]

\(\beta \) is clearly onto for all \(n \) and \(q \). Gluck has shown [1] that \(\rho \) and \(\gamma \), and hence \(\beta \) and \(\beta^i \) are isomorphisms for \(q \geq 2n + 2 \). Haefliger has shown [2] that \(\pi \) is a monomorphism and that \(\alpha \) is an isomorphism if \(2q > 3(n + 1) \).

It follows from Theorem 2 that \(\pi \) is also epimorphic if \(2q > 3(n + 1) \) and either \(q \geq 7 \) when \(f(M^n) \subset \text{int } Q^s \) or \(q \geq 8 \) when \(f^{-1}(\partial Q^s) = \partial M^n \). Then \(\pi \) and \(\beta \) are isomorphisms in this range of dimensions.

REFERENCES

UNIVERSITY OF CALIFORNIA, LOS ANGELES