CODIMENSION-TWO LOCALLY FLAT EMBEDDINGS HAVE NORMAL BUNDLES

Robion C. Kirby

Let \(P^p \) and \(Q^q \) be topological manifolds of dimensions \(p \) and \(q \), respectively, and let \(i: P \to Q \) be a locally flat imbedding. If \(p + 1 = q \) and \(i(P) \) separates \(Q \), then Brown has shown that \(i(P) \) is flat, i.e., it has a trivial normal bundle \([1]\).

We have a similar theorem in codimension 2.

Theorem 1. If \(p + 2 = q \), \(\exists \) a neighborhood \(B \) of \(i(P) \) and a map \(\pi: E \to i(P) \) which is a bundle \(v \) with fiber \(B^2 \) and structural group \(\mathcal{H}(R^3) \), the space (with the CO-topology) of homeomorphisms of \(R^2 \) which fix the origin, \(v \) is unique up to ambient isotopy.

If \(\partial P \neq \emptyset \) and \(P = P \cup (\partial P \times [0, 1]) \), then \(i \) extends to a locally flat embedding \(\tilde{i}: \tilde{P} \to Q \), where \(\tilde{P} \) is a bundle over \(P \) with fiber \(\partial P \times [0, 1] \).

Since \(\mathcal{H}(R^3) \) deforms to \(O(2) \), \(\tilde{i} \) is a normal bundle.

Since \(\mathcal{H}(R^2) \cong \text{TOP}_2 \cong O(2) \cong S^1 \times S^1 \), and since there is a universal bundle \(\text{TOP}_2 \to E_{\text{TOP}_2} \to B_{\text{TOP}_2} \), with contractible total space \(E_{\text{TOP}_2} \), we see that

\[
\pi_i(B_{\text{TOP}_2}) = \begin{cases}
0, & i \neq 1, 2, \\
Z, & i = 1, \\
Z, & i = 2.
\end{cases}
\]

The topological two-plane bundles over \(P \) are classified by maps \(P \to B_{\text{TOP}_2} \). Thus the oriented bundles over \(P \) are classified by \(H^2(P; \pi_2(\text{TOP}_2)) = H^2(P; \mathbb{Z}) \).

If \(q - p \geq 3 \), it is known that there exist locally flat embeddings (in fact, PL embeddings) which have no normal disk bundles \([3]\). But if \(q - p \) is large enough with respect to \(p \), then normal bundles do exist \([10]\). Since normal bundles do not always exist, it would be nice to have normal block bundles and a good topological block bundle theory \([10, 11]\).

However, topological block bundles will have to differ somewhat from PL block bundles because there are topological manifolds without handlebody structures in dimension four or five \([7]\).

Section 1 contains definitions and background, Section 2 has the main lemma, Theorem 1 is proved in Section 3, and Section 4 has an application on straightening handles.

1

Let \(R^p \) be euclidean n-space, \(R^p = \{ x \in R^p | x \geq 0 \} \), \(rB^p \) the ball of radius \(r \) in \(R^p \), \(rS^{p-1} \) its boundary, and \(B^p \) its interior.

\(i: P \to Q \) is said to be locally flat if for each \(\bar{p} \in Q \), there exists a neighborhood \(N \) such that \((N, \partial N \cap i(P)) \) is pairwise homeomorphic to \((R^p, \partial R^p)\), where \(p \) and \(q \) are the dimensions of \(P \) and \(Q \). \(i(P) \) is flat if \(i \) extends to an embedding \(i: P \times R^p \to Q \); i.e., \(i(P) \) has a trivial normal bundle. If \(\partial P \neq \emptyset \) and \(i(P) \cap \partial Q \), \(i \) is locally flat (flat) if \(i \) extends to a locally flat (flat) embedding of \(P \cup (\partial P \cap \partial Q) \). This condition is equivalent to \((N, \partial N \cap i(P)) \) being pairwise homeomorphic to \((R^p, \partial R^p)\) for \(p \in \partial P \). If \(i \) is proper (proper \((\partial i(C) = \partial P) \), then it is locally flat if \((N, \partial N \cap i(P)) \) is homeomorphic to \((R^p, \partial R^p)\) for \(p \in \partial P \).

Let \(\mathcal{H}(X) \) be the space (with the compact open topology) of homeomorphisms of \(X \) which fix \(Y \) pointwise. A basis for the neighborhoods of the identity consists of sets of the form \(N(C, \epsilon) = \{ h \in \mathcal{H}(X) | d(h, x) < \epsilon \} \) for all \(C \) and all compact sets \(C \) and \(\epsilon > 0 \).

The following statements can be found in \([2]\). If \(L \) is locally flat in \(M \) and both \(L \) and \(M \) are compact or interiors of manifolds with boundaries, then \(\mathcal{H}(L) \) is locally contractible. Let \(J \) and \(K \) be compact subsets with \(J \subset \text{int} K \subset M \). Given \(e > 0 \), there exists \(\delta > 0 \) such that if \(h \in N(K, \delta) \), then \(\exists \) a canonical isotopy \(h_t: M \to M, t \in [0, 1] \) with \(h_0 = h, h_1 = \text{identity}, h_t \in N(K, \delta) \), and \(h_t \to h_0 \) as \(t \to 0 \).

Let \(g: L \to M \) be a locally flat isotopy; i.e., \(G = (g, \epsilon) : L \times I \to M \times I \) is locally flat in a level-preserving way. Then \(g \) extends to an ambient isotopy of \(M \). Further, if \(g \) is small, then so is the extension and it is supported on a neighborhood of \(G(L \times I) \).

We will say that \(A \) is a weak deformation retract of \(X \) if \(A \) is a homotopy \(H_1 : X \to X, t \in [0, 1] \), with \(H_0 = \text{identity}, H_1 \in N(A, \epsilon) \subset A, H_1(A) \subset A \).

2

The main new idea in Theorem 1 is contained in the next lemma. Then by applying it, using standard techniques, we get Theorem 1.

Lemma. Let \(h: M \times R^2 \to M \times R^2 \) be a homeomorphism with \(h(M \times 0) = \text{id} \), where \(M \) is a compact manifold. Then \(h \) is isotopic to a fiber

416
preserving homeomorphism. Specifically, \(h_t : M \times R^2 \to M \times R^2, t \in [0, 1] \) with \(h = h_0, h_t(0) = 0 \) for all \(t \) and \(h_t(z \times R) = z \times R \) for all \(z \in M \).

Proof. We will isotope \(h \) so that it becomes close enough to a rotation so as to apply local contractibility to move \(h \) to the rotation (= homeomorphism \(\rho : M \times R^2 \to M \times R^2 \) with \(\rho(z, \theta) = (z, \rho_\theta(z)) \)).

Using polar coordinates for \(R^2 \), we describe points of \(M \times R^2 \) by triples \((z, \theta, t), z \in M, (\theta, t) \in R^2 \); \(h \) can be written \(h(z, \theta, t) = (h(z, \theta, t), h_\theta(z, \theta, t), h_t(z, \theta)) \). We will isotope \(h_\theta \) and \(h_t \) so that they are small enough (on \(M \times K^B \)) for some \(K > 0 \) and \(h_t \) so that it is close enough to a rotation.

Step 1. There is a well-known argument for making \(h_\theta \) small. Let \(C_\theta = M \times tS^1 \) and \(D_{\theta} = M \times tB^2 \). We can assume by squeezing that \(D_{\theta} \subset h(D_{\theta}) \subset D_{\theta} \), and \(h(D_{\theta}) \subset D_{\theta} \), (see Figure 1). We need to move \(h(C_\theta) \) out of \(C_{\theta} \) and \(C_{\theta} \), without moving \(h(C_\theta) \). For a small enough \(r > 0 \), \(h(C_\theta) \subset D_{\theta} \). We use the radial structure given by \(h \) to obtain a homeomorphism \(f : M \times R^2 \to M \times R^2 \) which slides \(h(C_\theta) \) to \(h(C_\theta) \) and fixes \(h(C_\theta) \) so that \(f(D_{\theta} \setminus C_{\theta}) \subset h(D_{\theta}) \). We use the radial structure given by \(f \) to slide \(h(C_\theta) \) close enough to \(C_{\theta} \) so that it is between \(C_{\theta} \) and \(C_{\theta} \). Now \(D_{\theta} \subset h(D_{\theta}) \subset D_{\theta} \subset h(D_{\theta}) \subset D_{\theta} \).

![Figure 1](image)

We may iterate this process countably many times so that \(D_{\theta} \subset h(D_{\theta}) \subset D_{\theta} \), where the sequence \(K = t_1 > t_2 > \ldots > 0 \) forms an arbitrarily fine subdivision of \([0, K] \) and the \(e_i \) are as small as desired. \(h_\theta \) is now small on \(M \times K^B \). Call this new homeomorphism \(h' \).

Step 2. Let \(h'(x, 0, t) = (h'(x, 0, t), h_t(x, 0, t), (1/\delta)h_t(x, 0, \delta t)) \). We claim that if \(\delta \) is small enough, then \(h'_t \) is arbitrarily small on \(M \times K^B \), and that \(h'_t \) is still small enough. The first follows because \(h' \) is continuous and is the identity on \(M \times 0 \), and the second follows if \(\{t_1\} \) is fine enough.

Step 3. We will isotope \(h'' \) so that on \(M \times K^B \) it is close enough to the rotation \(\rho \), defined by \(\rho(z, \theta, t) = (z, \theta + h'_t(z, \theta, t)) \). Let \(g = \rho^{-1} h'' \). If \(h'_t \) and \(h'_t \) are small enough on \(M \times K^B \), then \(g \) will be small enough near \(M \times 0 \times (0, K) \). In particular, given \(e > 0, 3 \delta > 0 \) such that \(g(x, 0, t) \in M \times [-e, e] \times (0, \infty) \) for \(t \in [-\delta, \delta] \) and \(t \in (0, K] \) (see Figure 2).

![Figure 2](image)

Let \(g \) be a certain finite covering of \(g \):

\[
\begin{align*}
M \times R^2 &\xrightarrow{\lambda} M \times R^2 \\
\lambda &\xrightarrow{\delta} M \times R^2 \\
M \times R^2 &\xrightarrow{\delta} M \times R^2 \\
\end{align*}
\]

Let \(\lambda : S^1 \to S^1 \) be defined by \(\lambda_\delta(0) = n\delta(2\pi) \), the \(n \)-fold covering map. Let \(\lambda_\delta \) be an approximation to \(\lambda_\delta \), with the properties that \(\lambda_\delta = id \) on \([-e, e]\) and \(\lambda_\delta = \lambda_\delta \) outside \([-2e, 2e]\), where we need to have chosen \(e \) small enough.

Finally, let \(\lambda = id \) on \(M \times 0 \) and \(\lambda(x, 0, t) = (x, \lambda_\delta(\theta), t) \) for \(t > 0 \). Then it is
easy to see that \(g \) lifts to a homeomorphism \(\tilde{g} \) with \(g = \tilde{g} \) on the wedge \(M \times [-\delta, \delta] \times (0, K) \). Therefore, \(g \) is isotopic to \(\tilde{g} \), via an isotopy fixing \(M \times 0 \).

It is not hard to verify that we can make \(\tilde{g} \) arbitrarily small on \(M \times K^2 \) by taking \(\delta \) large enough. By local contractibility, \(\tilde{g} \) is isotopic to the identity on \(M \times K^2 \), and hence on \(M \times R^2 \).

Since \(\rho^{-1} h = \tilde{g} \) is isotopic to the identity, it follows that \(\tilde{h} \) and, therefore \(h \), is isotopic to the rotation \(\rho \) (fixing \(M \times 0 \) throughout), finishing the proof of the lemma.

Remark 1. Suppose \(h \) is fiber preserving on a neighborhood of a subset \(L \) of \(M \). Then we can find an isotopy \(h_t \) with the additional property of being fiber preserving on a smaller neighborhood of \(L \) in \(M \). The isotopies constructed in steps 1, 2, and 3 are all clearly fiber preserving if \(h \) is, except possibly the isotopy constructed using local contractibility. \(\tilde{g} \) is small on each fiber over the neighborhood of \(L \), so we isotop \(\tilde{g} \) to the identity on each fiber separately. This is done in a continuous way (using local contractibility) so we get a fiber-preserving isotopy \(\tilde{g}_t : M \times R^2 \to M \times R^2 \), with \(\tilde{g}_0 = \tilde{g} \) and \(\tilde{g}_1 = \text{identity on a neighborhood of } L \) (see Section 1 on local contractibility). \(\tilde{g}_1 \) can still be small enough to be isotopic to the identity elsewhere, using the relative form of local contractibility.

Remark 2. If \(M \) is not compact, then we may find \(h_t \) with \(h_0 \) fiber preserving on an arbitrarily large compact subspace. All the steps in the lemma rely on compactness. For example, in step 3, \(\rho \) may wind \(M \times R^2 \) around \(M \times 0 \) more and more as one approaches the open ends of \(M \). But on a compact subset, this winding is bounded so some finite cover gives \(\tilde{g} \) is small enough.

Remark 3. We can require that \(h_0 \) have compact support if we only require \(h_t \) to be fiber preserving near \(M \times 0 \). Specifically, we get \(h_t = \text{id} \) outside some compact set and \(h_t(x \times K^2) = x \times K^2 \) for \(x \) in a compact subset of \(M \). One just checks that all constructions can be done in a neighborhood of \(C \times 0, C \text{ compact in } M \).

Remark 4. The lemma still holds when \(h \) is only an embedding (with \(h(M) = \phi(id) \)). This follows because we have noted that all constructions are done in a neighborhood of \(M \times 0 \) (or \(\partial M \not\subseteq \Omega \), we need to assume that \(h \) is a proper embedding.)

Proof of Theorem 1

Let \(P_0 \) be an open submanifold of \(P \) with a normal bundle \(v_0 \) over \(\partial P_0 \) in \(Q \). Let \(R^2 \) be a coordinate patch in \(P \) with \(\tilde{R}^2 \) flat in \(Q \) and let \(M = P_0 \cap R^2 \). Suppose at first that \(v_0(M) \) is trivial so that there is an embedding \(\alpha : M \times R^2 \to Q \) with \(\alpha(M \times R^2) = E(v_0(M)) \). Since \(\tilde{R}^2 \) is flat, let \(\beta : M \times R^2 \to Q \) be the flat structure on \(\alpha(M) \). We can assume that \(\beta(M \times R^2) = (M \times R^2) \), so as to consider \(\alpha^{-1} \beta : M \times R^2 \to M \times R^2 \). By the lemma (including the remarks, particularly 4), \(\alpha^{-1} \beta = h _ {\text{isotopic (with compact support)}} \) to an embedding \(h_0 \) with \(h_0(x \times K^2) = x \times K^2 \) for all \(x \) in some large compact subset of \(M \). Then

\[
\beta_t = \begin{cases}
\alpha_t & \text{on } M \times R^2, \\
\beta & \text{on } (R^2 - M) \times R^2
\end{cases}
\]

is an isotopy fixing \(R^2 \) with \(\beta_t(x \times K^2) = \alpha_t(x \times K^2) \) for \(x \) in the above compact subset of \(M \). By restricting \(\beta_t \) to \(R^2 \) \(\text{int } K^2 \) and then applying the microbundles-are-bundles argument in [8], we get that \(\beta_t(x \times R^2) = \alpha_t(x \times R^2) \) for the above \(x \). Thus, taking appropriate refinements of \(P_0 \) and \(R^2 \), say \(P_0 \) and \(R_0 \), we have extended \(v_0 \) to a bundle over \(\tilde{P}_0 \cup R_0 \).

Now suppose \(v_0(M) \) is trivial. Then we cover a large enough compact subset of \(M \) with open sets \(M_0, \ldots, M_n \) on which \(v_0 \) is trivial. We proceed as above with \(M_0 \). Then for \(M_2, \ldots, M_n \) we use the relative form of the lemma in Remark 1, to make \(\alpha_t^{-1} \beta_t \) fiber preserving over large compact subsets of \(\bigcup_{j=1}^{n-1} M_j = \{ 2, \ldots, n \} \). So as before \(v_0 \) extends over \(\tilde{P}_0 \cup R_0 \).

If \(P \) is compact with \(\partial P \not\subseteq \Omega \), we construct \(v \) coordinate patch by coordinate patch, as above, using appropriate refinements; when \(P \) is open, paracompactness is sufficient for the same construction to work. This sort of argument is well known and we omit further details.

If \(\partial P \not\subseteq \Omega \) and \(\tilde{P} = \partial P \), we add an open collar to \(\partial P \), extend \(i, j \), and proceed as above. If \(i \) is proper \(\tilde{P} \cap (Q \cup \partial P) \), then we construct \(v \) on \(\partial P \) in \(\tilde{P} \cup \partial P \), extend to collars, and continue as above.

Proposition

\(\mathcal{F}_p(R^2) \) is a weak deformation retract of \(\mathcal{F}_p - \partial P(R^2) \).

Proof. \(\mathcal{F}_p - \partial P(R^2) \) is clearly a strong deformation retract of \(\mathcal{F}_p(R^2) \). But by adding a point at infinity, compactifying each homeomorphism, and removing the origin, we see that there is a homeomorphism \(\Omega : \mathcal{F}_p - \partial P(R^2) \to \mathcal{F}_p(R^2) \). Now \(\mathcal{F}_p(R^2) \) deforms to \(\mathcal{F}_p(R^2) \) by Theorem 1 of [8]. Applying \(\Omega^{-1} \) to this deformation shows that \(\mathcal{F}_p(R^2) \) is a weak deformation retract of \(\mathcal{F}_p - \partial P(R^2) \).

Furthermore, if \(h_0 \in \mathcal{F}_p - \partial P(R^2) \) and \(h_1 \) is the deformation taking \(h_0 \) into \(\mathcal{F}_p(R^2) \), then \(h_1 \) has compact support. This follows directly from Kister’s proof.

Theorem 2

Let \(h : B^2 \times R^2 \to B^2 \times R^2 \) be a homeomorphism with \(k \neq 1 \) and \(h \) is identity on \(S^{2-1} \times R^2 \). Then \(h \) is isotopic to the identity, fixing \(h_0 \).
Proof. We can assume that \(h = \text{identity} \) on \((B^n - \frac{1}{4}B^n) \times R^2 \). Then the interior of \(B^4 \times R^2 \) is \(R^{n+2} \), and from the proposition above, it follows that \(h \) is isotopic (rel \(\partial \)) to a homeomorphism \(\tilde{h} \) which fixes \(B^3 \times 0 \). It is now easy to see that the method of proof of the lemma works here to give the desired isotopy of \(h \) to the identity (rel \(\partial \)). (Since \(\partial \tilde{h} = \text{identity} \), it is not necessary to alter it on the \(\partial \) in steps 1 or 2, since \(k \neq 1 \) and \(\pi_1(\mathbb{R}^2) = 0 \), no alteration is necessary in step 3 either.)

Now consider the problem of straightening 3-handles (see [4], [5], and [6]). Let \(h : B^3 \times R^2 \to V \) be a homeomorphism, \(\text{PL} \) on the boundary, onto a \(\text{PL} \) manifold \(V \). We wish to straighten \(h \), i.e., find an isotopy \(h_t \), \(t \in [0, 1] \), with \(h_0 = h \), \(h_t \in \text{PL} \). If \(n \geq 3 \), Sullivan has shown that \(h_t \) extends to a \(\text{PL} \) homeomorphism \(h : B^3 \times R^2 \to V \). However, 3 nonstraightenable 3-handles for \(n \geq 2 \), so 3 homeomorphisms \(g = h^{-1} : B^3 \times R^2 \to B^3 \times R^2 \), identity on \(\partial \), which are not isotopic to \(\text{PL} \) homeomorphisms rel \(\partial \), when \(n \geq 3 \).

On the other hand, when \(n = 2 \), we have just seen in Theorem 2 that any homeomorphism \(g : B^3 \times R^2 \to B^3 \times R^2 \), \(g = \text{identity} \) on \(\partial \), is isotopic to the identity, rel \(\partial \). Thus, since 3 nonstraightenable 3-handles \(h : B^3 \times R^2 \to V \), we see that \(V \) cannot be \(\text{PL} \) homeomorphic to \(B^3 \times R^2 \), rel \(\partial \). Therefore, \(B^3 \times R^2 \) has more than one \(\text{PL} \) structure rel \(\partial \) (in fact, two).

So nonstraightenable 3-handles \(h : B^3 \times R^2 \to V, n \geq 2 \), arise in two ways: if \(n = 2 \), \(V \) is not \(\text{PL} \) homeomorphic to \(B^3 \times R^2 \) rel \(\partial \) so of course \(h \) cannot be straightened; if \(n \geq 3 \), \(V \) is \(\text{PL} \) homeomorphic to \(B^3 \times R^2 \) rel \(\partial \), but the homeomorphism \(h \) is bad.

We say that two \(\text{PL} \) structures on a manifold are equivalent up to isotopy (homotopy) if the identity is isotopic (homotopic) to a \(\text{PL} \) homeomorphism.

From [4], [5], [6], and the above, the \(\text{PL} \) structures (rel \(\partial \)) up to isotopy on \(B^3 \times R^2, n \geq 2 \), correspond to \(H^1(B^3 \times R^2, \partial; Z_2) = Z_2 \), and the \(\text{PL} \) structures (rel \(\partial \)) up to homotopy correspond to \(Z_2 \) if \(n = 2, 0 \) if \(n \geq 3 \).

Acknowledgment

The preparation of this paper was sponsored in part by NSF Grant GP-9627.

References