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Definition 6.2.8. An sc™ section s : X — Y of an M-polyfold bundle is a sc-Fredholm section if s
is rﬁgt«f/arizfns@in the sense of Definition 6.1.8 and for each » € X there is a local sc-trivialization
® : p~Y(U) — R in the sense of Definition 6.1.4 over a neighbourhood U C X of x with ®(x.0) =
0, such that ®.s has a Fredholm filling in the sense of Definition 6.2.7. @ intrivializations:
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“Definition 6.2.7. Let s : O — R, s(p) = (p. f(p)) be an sc* section of an M-polyfold bundle
model pry - R — O as in Definition 6.1.1, whose base is an sc-retract O C [0, 00)¥ x E containing
0 € [0.00)F x E, and with fibers R, C F forp € O. Then a'Fredholm filling at 0 for s over O
consists of
o i se-retraction of bundle rype B : U x F — U x F, R(p. h) = (r(p).11,h) on an open
subset U C [0,00)F x E such that r(1) = O and TL,F =R, forall p € O,
o an sc™ map f U —» F that is sc-Fredholm at O in the sense of Definition 6.2.4,
with the following properties: \
L F - -t
(i) flo = 1: ) 3 < £ 0 =£"1v)
(i) ifp € U such that f(p) € R, then p = r(p), thatis p € O;
(iii) Thedinearisation-of-the-map [0 oo\ x B T p s (idp —Hﬁ‘n\)f(p) at eac%p e O
S\/ restricts to an isomorphism from ker Dpr to ker 11,. = IP (Vo, 3 ‘

- oDE TI;ODE( Rk“E:TI-’@@T@l
ker rvesp. coker of D.F- T, °D¢ lTp@ S et n P

ident cFred with o Lo F = Reo %

kev- vesp. coker of Dyf = _IT;,.° 'Dfl_'}a 2 TpO —"'fp
n

R ~EE F



Definition 6.3.1. A scale smooth section s : X — ) is called transverse (to the zero section) if
for every x € g1 (0) the linearizatrion D, s T +X — V. is surjective. Here the linearization D s
is represented b\' the differential Dy, (Il o for)|r,, o @ Ty O — Uy (F) in any local sc-
trivialization p~1(U) = Upe(’) I1,(F) which covers ¢ : X DU = O = r(U) C E and transforms
stop— (p, f(p)). (“"')\Ul
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Theorem 6.3.2 ((HWZ2], Thm. 5.14). Let s : X — Y be a transverse sc-Fredholm section.
Then the solution set M := s~ 1(0) inherits from its ambient space X a smooth structure as finite
dimensional manifold. Its dimension is given by the Fredholm index of s and the tangent bundle is
given by the kernel of the linearized section, T, M = ker D,.s.
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Theorem 6.3.7. ((HW/Z2], Theorem 5.22) Letpr : Y — X be a Stmng/M-pm')jﬁ)ld bundle modeled
on ._S‘c"—vHi.!'berr_spac‘es, and let s : X — Y be a proper Fredholm S(’(‘ff(ﬂ/e sio) [l compact
(i) For any auxiliary norm N : y1 — [0, 00) and neighbourhood s=(0) C U C X controlling
compaciness, there exists an’§¢ " -section v : X — Yy withsuppr C U and sup,.y N(v(x)) <1
and such that s + v is transverse to the zero section. In particular, (s + 1)~ 1(0) carries the
structure of a_smooth compact manifold.
(ii) Given two transverse perturbations v; : X — Yy fori = 0,1 as in (i), controlled by auxiliary
norms._and neighbourhoods (Ni,U;) controlling compaciness, there exists an sc™ -section v
X x [O 1] — Vi such n’mr {(z.t) € X x [0.1] | s(x) + v(x, 1)} is a smooth compact cobordism
from (s + 1v9)~1(0) 10 (s + 1) L(0).
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Proof of

Theorem 6.3.7. ([HWZ2],Theorem 5.22) Let pr : Y — X be a strong M-polyfold bundle modeled
on sc-Hilbert spaces, and let s : X — ) be a proper Fredholm section.

(i) For any auxiliary norm N : Y1 — [0, 00) and neighbourhood s=(0) C U C X controlling
compactness, there exists an s¢™-section v : X — Yy withsupp v C U and sup,cy N(v(x)) <1
and such that s + v is transverse to the zero section. In particular, (s + v) ™1 (0) carries the
structure of a smooth compact manifold.

(ii) Given two transverse perturbations v; - X — Y fori1 =0, 1 as in (i), controlled by auxiliary
norms and neighbourhoods (N;,U;) controlling compactness, there exists an s¢™-section U
X x [0,1] = Yy such that {(x.t) € X x [0,1] | s(x) + (2. 1)} is a smooth compact cobordism
from (s + 1)~ 1(0) to (s + v1)H(0). ‘

uses Sard -Smale on uni versall moduli space
{(X,’V) e £ * [J+(Y) ' swppre U, |l'V||nl“<1 , (s+'v)cx)=o}
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Addendum : fonbinear sc- Fredhotm theory

'Definition 6.1.5. An M- polyfold bundle p : Y — X is called strong if it has trivializations in strong
M-polyfold bundle models that are strongly compatible in the following sense. e 43 x
(i) A strong sc-retraction of bundle type is a retraction R : U x F — [O—ed;‘ x E x F,

(v.e. f) = (r(v.e), I, ) f) as in (10) that restricts to an sc™ map UxFy — [, oeT x ExF,

. . . . . 3
i.e. a retraction in the sc-Banach space (Rk' X By X Fm+1)m No' GWse: D x 3> H

(ii) A strong M-polyfold bundle model is the projection pro, : R = U]JEO{ p} xRy, = O
from the total space of a strong sc-bundle retract (R, C F),co 1o its base retract O as in
Definition 6.1.1, where 'R is the image of a strong retraction of bundle type.

(iii) Two local sc-trivializations ® : p~1(U) = R C [0.00)* x E x F, and &' : p~1(U') —
R’ C [0.00)¥ x B xF 1o strong M-polyfold bundle models R — O and R’ — O’ are strongly
compatible if their transition map restricts to a scale smooth map with respect to the ambient
sc-sectors [0, 00)% x E x Fy and [0, 00)* x B/ x F,. That is, we require s¢> regularity of the
map between these sectors in sc-Banach spaces of )

o ® o d o R RTYO(p (U NUN))N[0.00)f xExFy — [0.00)" x E' x F|
for any strong sc-retraction of bundle type with R(U x F) = R (and hence R(U,x F) =
RN (U x F)), and the inclusion 1z : R' N (U' x F{) — [0.00)F x Ely x F{.

For a strong M-polyfold bundle p : Y — X we denote by p|y1 : V! — X the subbundle Qﬂf@bf@m

Y € Y such that for some (and hence any) trivialization ® : p~! (U)—RC W x ExFtoa
strong M-polyfold bundle model we have ®(Y') € [QeecT" x Ey x F. D x H3x 1

D » H3>H3
Dx: Y'=lw,p) | ne H(N wrTa)
is o well defined set because H3(w*TM) ir well defined For weR>
(not just % as reguived for Y , but HE (WP TM) ism'e welt defined if wgH )

‘Definition 6.3.6. An auxiliary norm N for the strong M-polyfold bundle pr = Y — X is a con-
tinuous map N : Y1 — [0.00) such that the restriction to each fiber pr='(x) N Yy forx € X isa
complete norm. hoka RE~F' 2 MI ) — Mlg

Moreover, if s X — YV is a proper section, then a pair of an auxiliary norm N and an open
neighbourhood U C X of s~1(0) is said to control compactness if for any sc*-sectionv : X — YV
with suppr C U and sup,cy N(v(x)) < 1 the perturbed solution set (s + v)71(0) C X is
compact. ‘
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‘Definition 6.1.8. Ler p : Y — X be a strong M-polyfold bundle. We denote the space of sc*°
sections by

U(p)={¥:Y = X sc™ |pos =ldy}.

The subset of set sections '™ (p) C T'(p) is the subset of those sections s € T'(p) with values in Y1,
or equivalently T (p) 2 T'(ply, ).

Moreover, we call a section s € T'(p) regularizing if the following implication holds:
m € No,w € Xy s(x) €Y — o€ Xyt
The space of regularizing sections is equivalently defined and denoted by
[ (p) := {p e 1'(p) ‘Vm € Ny : .9_1(;)/]1?1) C Xm+1}. ]
Rmk : sct 2 fower orole compact futurbai'ton
sel™ ,'Vef” = S+vel"?

stabill

Theorem 6.2.10 ((HWZ2], Thm. 3.9). Let p : ¥V — X be a strong M-polyfold bundle. Then for
any sc-Fredholm section s : X — Y and sc™ sectionv : X — V& the section s + v X — YV is
again sc-Fredholm.
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further resources for polyfold theory:

survey (as advertised throughout - and feedback most welcome):
http://arxiv.org/abs/1210.6670

and the references therein

lecture videos:

* 2009, for entertainment value: http://www.msri.org/workshops/479/schedules/3779
* 2012 lecture series at IAS: http://video.ias.edu/intropolyfolds/wehrheim
http://video.ias.edu/intropolyfolds/albers

http://video.ias.edu/polyfoldsminicourse/hofer1

reading courses / working groups at UC Berkeley: possible almost anytime -
contact: wehrheim@berkeley.edu

July 5-19, 2015 there will be a summer school "Moduli Problems in Symplectic
Geometry"” The scientific committee is Hofer, Hutchings, McDuff and organizing
committee Cristofaro-Gardiner, Fish, Nelson.

Organized as part of the IHES Lectures, this Summer School aims to provide PhD
students, post-docs, and young researchers with an overview of recent developments
in moduli spaces of pseudoholomorphic curves in symplectic and contact geometry.

Pseudoholomorphic curves arise as the zero set of a Fredholm section of a suitable
bundle. Provided the section can be appropriately perturbed, these moduli spaces yield
powerful contact and symplectic invariants such as Gromov-Witten theory, Hamiltonian
Floer homology, contact homology, symplectic homology, and Symplectic Field Theory,
which will be addressed in detail during the workshop. There are two main perturbative
techniques, geometric and functional analytic.

The geometric perturbation methods are powerful for applications and practical from a
computational point of view but typically require many restrictive assumptions and fail
to generalize broadly. We will introduce researchers to the polyfold machinery of Hofer,
Wysocki, and Zehnder, a new analytic framework designed to resolve the issue of
transversality systematically. As computations are integral in applications of the
aforementioned invariants, we will also explore how geometric perturbation schemes
can be incorporated into the polyfold package.

We will supplement 7 mini courses with moderated discussions and related talks by
senior faculty on current and future directions for the field.
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