
FUNCTORIALITY FOR LAGRANGIAN CORRESPONDENCES IN

FLOER THEORY

KATRIN WEHRHEIM AND CHRIS T. WOODWARD

Abstract. We generalize Lagrangian Floer theory to sequences of Lagrangian correspon-
dences and establish an isomorphism between the Floer homology groups of sequences
that are related by the geometric composition of Lagrangian correspondences. On these
Floer homologies, we define relative invariants arising from “quilted pseudoholomorphic
surfaces”: Collections of pseudoholomorphic maps to various target spaces with “seam
conditions” in Lagrangian correspondences and boundary conditions in Lagrangian sub-
manifolds. Using these new invariants, we define a composition functor for categories of
Lagrangian correspondences in monotone and exact symplectic Floer theory. We show that
this functor agrees with geometric composition in the case that the composition is smooth
and embedded. As a consequence we obtain “categorification commutes with composition”
for Lagrangian correspondences.
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1. Introduction

In this paper we study composition of Lagrangian correspondences in monotone and ex-
act Lagrangian Floer theory. Following Donaldson and Fukaya, one associates to a compact
monotone (or noncompact exact) symplectic manifold (M,ω) a category Don(M) whose
objects are certain compact, oriented, relatively spin, monotone (or exact) Lagrangian sub-
manifolds of (M,ω) (which we call admissible, see Section 6.1) and whose morphisms are
Floer cohomology classes. We use a variation of the usual definition, which we denote
Don#(M). Given two symplectic manifolds M0 and M1 of the same monotonicity type, an
admissible Lagrangian correspondence L01 ⊂M−

0 ×M1 gives rise to a functor

Φ(L01) : Don#(M0) → Don#(M1).

Given a triple M0, M1, M2 of symplectic manifolds and admissible Lagrangian correspon-
dences L01 ⊂M−

0 ×M1 and L12 ⊂M−
1 ×M2, the algebraic composition Φ(L01) ◦ Φ(L12) :

Don#(M0) → Don#(M2) is always defined. On the other hand, one may consider the geo-
metric composition L01 ◦ L12 that was introduced by Weinstein [49, 48]. Under suitable
transversality hypotheses, the restriction of the projection π02 : M−

0 ×M1 ×M−
1 ×M2 →

M−
0 ×M2 to

L01 ×M1 L12 :=
(
L01 × L12

)
∩
(
M−

0 × ∆M1 ×M2

)

is an immersion, whose singular Lagrangian image we denote by

L01 ◦ L12 ⊂M−
0 ×M2.

Our main result is that if L01 ×M1 L12 is a transverse (hence smooth) intersection and
embeds by π02 into M−

0 ×M2 then

(1) Φ(L01) ◦ Φ(L12) ∼= Φ(L01 ◦ L12).

In other words, “categorification commutes with composition”. If M1 is not spin, there is
also a shift of relative spin structures on the right-hand side. The starting point for this
functoriality is an elementary construction of a symplectic category consisting of symplectic
manifolds and certain sequences of Lagrangian correspondences, explained in Section 2.

There is a slightly stronger version of this result, expressed in the language of 2-categories
as follows. Let Floer# denote the Weinstein-Floer 2-category whose objects are symplectic
manifolds, 1-morphisms are sequences of Lagrangian correspondences, and 2-morphisms
are Floer cohomology classes; we denote composition of 1-morphisms in this category by
#. The maps above extend to a categorification 2-functor from Floer# to the 2-category
of categories Cat. A refinement of the main result says that the concatenation L01#L12 is
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2-isomorphic to the geometric composition L01 ◦L12 as 1-morphisms in Floer#; the formula
(1) follows by combining this result with the 2-functor axiom for 1-morphisms.

The functors Φ as well as the composition functor and the natural transformations in
this categorification are defined by new Floer type invariants arising from quilted pseudo-
holomorphic surfaces. These quilts consist of pseudoholomorphic surfaces (with boundary
and strip-like ends in various target spaces) which satisfy seam conditions (mapping certain
pairs of boundary components to Lagrangian correspondences) and boundary conditions
(mapping other boundary components to simple Lagrangian submanifolds). Similar moduli
spaces have been considered by Khovanov and Rozansky [19] under the name of pseudo-
holomorphic foams.

An isomorphism of Floer cohomologies: A more down-to-earth but weaker version of
our result is the following. (For the precise monotonicity and admissibility conditions see
Section 5.)

Theorem 1.0.1. Let M0,M1,M2 be either a triple of exact symplectic manifolds or a triple
of compact, monotone symplectic manifolds with the same monotonicity constant, and let

L0 ⊂M0, L01 ⊂M−
0 ×M1, L12 ⊂M−

1 ×M2, L2 ⊂M−
2

be compact, monotone, and admissible Lagrangian submanifolds. If L01 ×M1 L12 is smooth,
embeds by π02 into M−

0 ×M2, and the Lagrangian image L01 ◦L12 is monotone and admis-
sible, then there exists a canonical isomorphism

(2) HF (L0 × L12, L01 × L2)
∼→ HF (L0 × L2, L01 ◦ L12).

The injectivity assumption on π02|L12×M1
L01 ensures a bijection between the intersections

of the Lagrangians (L0×L12)∩(L01×L2) ∼= (L0×L2)∩(L01◦L12). If these intersections are
transverse, then the isomorphism (2) is induced by the identity on the generators of the Floer
complex. The Floer differential for (L0 ×L12, L01 ×L2) counts triples of holomorphic strips
in M0,M

−
1 ,M2 (see Figure 1 below). In the standard definition, one would take the width

of all three strips to be equal, but in fact one can allow the widths of the strips to differ.
(These domains are not conformally equivalent due to the identification between boundary
components.) The main difficulty then is to prove that under the stated assumptions and
with the width of the middle strip sufficiently close to zero, the triples of holomorphic strips
in M0,M

−
1 ,M2 are in one-to-one correspondence with the pairs of holomorphic strips in

M0,M2 that are counted in the Floer differential for (L0 × L2, L01 ◦ L12).
As in similar situations in Floer theory, the proof is an application of the implicit function

theorem, on one hand, and compactness results for certain J -holomorphic strips, on the
other. In the limit various kinds of bubbling occur, including a particular “figure eight”
bubble that does not appear in the standard theory and must be disallowed by energy
quantization and the energy-index relation derived from the monotonicity or exactness
assumption. In this paper, only the version with Z2-coefficients is completely proved; to
reduce the length, we banished the discussion of coherent orientations to a separate paper
[46]. There should also be versions of this result for Floer cohomology with gradings,
coefficients in flat vector bundles, and Novikov rings. We give a detailed proof for the
gradings but not for the other versions.

Topological Applications: A consequence of our results is a general prescription for
defining topological invariants by decomposing into simple pieces. For example, let Y
be a compact manifold and f : Y → R a Morse function giving a decomposition Y =
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Figure 1. Tuples of holomorphic strips that are counted for HF (L0 ×
L12, L01 × L2) and for HF (L0 × L2, L01 ◦ L12)

Y01∪. . .∪Y(l−1)l into simple cobordisms by cutting along non-critical level sets X1, . . . , Xl−1.
First one associates to each Xj a monotone symplectic manifold M(Xj), and to each Y(j−1)j

with ∂Y(j−1)j = X−
j−1 t Xj a smooth monotone Lagrangian correspondence L(Y(j−1)j) ⊂

M(Xj−1)
− ×M(Xj) (taking M(X0) and M(Xl) to be points.) Second, one checks that

the basic moves described by Cerf theory (critical point cancellation, order-of-attaching
change, or handle slides) change the sequence of Lagrangian correspondences by replacing
adjacent correspondences with an embedded composition, or vice-versa. In other words, the
equivalence class of sequences of Lagrangian correspondences by embedded compositions
[L(Y01), . . . , L(Y(l−1)l)] does not depend on the choice of the Morse function f . Then the
results of this paper provide a group-valued invariant of Y , by taking the Floer homology
of the sequence of Lagrangian correspondences.

More categorically speaking, a consequence of our result is that the map assigning to any
symplectic or monotone symplectic manifold its Donaldson-Fukaya category extends to a
functor from Symp#, the category of (monotone symplectic manifolds, equivalence classes of
sequences of Lagrangian correspondences), to Cat, the category of (categories, isomorphism
classes of functors). Consider the category of compact oriented d-dimensional manifolds
and equivalence classes of d + 1-dimensional compact oriented cobordisms. For any other
category C we say following G. Segal that a (weak) C-valued d + 1-dimensional topological
field theory (C-valued TFT) is a functor from this cobordism category to C. Composing
with our categorification functor shows that any Symp#-valued TFT gives rise to a Cat-
valued TFT. Such symplectic-valued topological field theories should not be confused with
the symplectic quantum field theory of Eliashberg et al. [3] which is meant to be a functor
from the symplectic cobordism category to the category of vector spaces.

At least formally, there are a number of examples of this construction. In [45] we in-
vestigate the theory which uses as symplectic manifolds the moduli spaces of flat bundles
with compact structure group on three-dimensional cobordisms containing tangles. In this
case, after adding the data of holonomies around the tangles or determinant line bundles
and disallowing surfaces that give rise to singular or non-monotone moduli spaces, one ob-
tains a Symp#-valued TFT and hence a Cat-valued TFT. One can also construct natural
transformations for 4-dimensional cobordisms of cobordisms; in other words, a topological
quantum field theory with corners (roughly speaking; not all the axioms are satisfied) in
2 + 1 + 1 dimensions. These should be thought of as Lagrangian-Floer versions of gauge-
theoretic invariants investigated by Donaldson and Floer, in the case without knots, and
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Kronheimer-Mrowka and Furata-Steer, in the case with knots, and many other authors.
The equivalence of the gauge-theory version, in cases where the invariant has been defined,
and the pseudoholomorphic curves version developed here would be a version Atiyah-Floer
conjecture. The construction of such theories was suggested by Fukaya in [6], and was one
of motivations for the development of Fukaya categories.

Further directions: The original motivation comes from the exact triangle for fibered
Dehn twists, which is discussed in the paper [44]. The general theory developed here
allow us to formulate the exact triangle as a mirror partner to Horja’s exact triangles in
[13], so that the third term in the triangle is defined by applying a push-pull functor; this
formulation was suggested to us by P. Seidel and I. Smith, see [41]. Applied to the case of
flat bundles, this gives exact triangles for the various topological invariants. In particular,
for SU(r)-bundles on complements of tangles the exact triangle has the same form as the
one of Khovanov-Rozansky [18] for SU(r) tangle invariants.

Many of our results have chain-level versions, that is, extensions to Fukaya categories.
These are discussed in the paper [25], which is joint work with S. Mau. To each monotone
Lagrangian correspondence with minimal Maslov number at least three we define an A∞

functor, such that the composition of A∞ functors is homotopic to the A∞ functor for the
geometric composition, if smooth and embedded. Applied to moduli spaces of flat bundles,
this gives what might be called a field theory with corners assigning to any surface an A∞

category. Combining this with Kontsevich’s construction of derived A∞ categories gives a
field theory assigning to any surface a triangulated category. These categories are expected
to be better behaved; in particular, one might hope they are finitely split-generated. Even
more speculatively (in the spirit of Khovanov’s work [17]) one might hope for a combinato-
rial description of the categories which sheds some light on four-dimensional invariants, just
as the structure of the tensor categories of representations of quantum groups illuminates
the structure of the quantum Chern-Simons invariants. However (coming back to earth)
the analytic problems are present already in the homology-level version and best presented
in that framework.

Notation: We will frequently refer to the standing assumptions (M1-2), (L1-3), and (G1-2)
that can be found on pages 22 - 23.

One notational warning: When dealing with functors we will use functorial notation for
compositions, that is Φ0◦Φ1 maps an object x to Φ1(Φ0(x)). When dealing with simple maps
(like symplectomorphisms, or in the analytic part), we will however stick to the traditional
notation (φ1 ◦ φ0)(x) = φ1(φ0(x)).

We thank Paul Seidel and Ivan Smith for encouragement and helpful discussions.

2. Lagrangian correspondences

Let M be a smooth manifold. A symplectic form on M is a closed, non-degenerate two-
form ω. A symplectic manifold is a smooth manifold equipped with a symplectic form. If
(M1, ω1) and (M2, ω2) are symplectic manifolds, then a diffeomorphism ϕ : M1 →M2 is a
symplectomorphism if ϕ∗ω2 = ω1. Let Symp denote the category whose objects are sym-
plectic manifolds and whose morphisms are symplectomorphisms. The following operations
give Symp a structure similar to that of a tensor category.

(a) (Duals) If M = (M,ω) is a symplectic manifold, then M− = (M,−ω) is a symplectic
manifold, called the dual of M .
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(b) (Sums) If Mj = (Mj , ωj), j = 1, 2 are symplectic manifolds, then M1 ∪M2 equipped
with the symplectic structure ω1 on M1 and ω2 on M2, is a symplectic manifold.

(c) (Products) Let Mj = (Mj , ωj), j = 1, 2 be symplectic manifolds, then the Cartesian
product (M1×M2, π

∗
1ω1+π∗2ω2) is a symplectic manifold. (Here πj : M1×M2 →Mj

denotes the projections.)

Clearly the notion of symplectomorphism is very restrictive; in particular, the symplectic
manifolds must be of the same dimension. A more flexible notion of morphism is that of
Lagrangian correspondence, defined as follows [49, 48, 11]. Let M = (M,ω) be a symplectic
manifold. A submanifold L ⊂ M is isotropic, resp. coisotropic, resp. Lagrangian if the
ω-orthogonal complement TLω satisfies TLω ⊆ TL resp. TLω ⊇ TL resp. TLω = TL.

Definition 2.0.2. Let M1,M2 be symplectic manifolds. A Lagrangian correspondence from
M1 to M2 is a Lagrangian submanifold L12 ⊂M−

1 ×M2.

Example 2.0.3. The following are examples of Lagrangian correspondences:

(a) (Graphs) If ϕ12 : M1 →M2 is a symplectomorphism then its graph

graph(ϕ12) = {(m1, ϕ12(m1)) | m1 ∈M1} ⊂M−
1 ×M2

is a Lagrangian correspondence.
(b) (Fibered coisotropics) Suppose that ι : C →M is a coisotropic submanifold and that

the null foliation TCω of C is fibrating, that is, there exists a symplectic manifold
(B,ωB) and a fibration π : C → B such that ι∗ω is the pull-back π∗ωB. Then

(ι× π) : C →M− ×B

maps C to a Lagrangian correspondence.
(c) (Level sets of moment maps) Let G be a Lie group with Lie algebra g. Suppose

that G acts on M by Hamiltonian symplectomorphisms generated by a moment
map µ : M → g

∗. (That is µ is equivariant and the generating vector fields g →
Vect(M), ξ 7→ ξM satisfy ι(ξM )ω = −d(µ, ξ).) If G acts freely on µ−1(0), then µ−1(0)
is a smooth coisotropic fibered over the symplectic quotient M//G = µ−1(0)/G,
which is a symplectic manifold. Hence we have a Lagrangian correspondence

(ι× π) : µ−1(0) →M− × (M//G).

The symplectic two-form ωM//G on M//G is the unique form on M//G satisfying
π∗ωM//G = ι∗ω.

Definition 2.0.4. Let M0,M1,M2 be symplectic manifolds and L01 ⊂M−
0 ×M1, L12 ⊂

M−
1 ×M2 Lagrangian correspondences.

(a) The dual Lagrangian correspondence of L01 is

(L01)
t := {(m1,m0) | (m0,m1) ∈ L01} ⊂M−

1 ×M0.

(b) The composition of L01 and L12 is

L01 ◦ L12 :=

{
(m0,m2) ∈M−

0 ×M2

∣∣∣∣∣∃m1 ∈M1 :
(m0,m1) ∈ L01

(m1,m2) ∈ L12

}
⊂M−

0 ×M2.

Equivalently, L01 ◦ L12 = π02(L01 ×M1 L12) is the image under the projection π02 :
M−

0 ×M1 ×M−
1 ×M2 →M−

0 ×M2 of

L12 ×M1 L01 := (L01 × L12) ∩ (M−
0 × ∆1 ×M2).
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Here ∆1 ⊂M−
1 ×M1 denotes the diagonal. L01◦L12 ⊂M−

0 ×M2 is an immersed Lagrangian
submanifold if L01×L12 intersects M−

0 ×∆1×M2 transversally. In general, the composition
of smooth Lagrangian submanifolds may not even be immersed. We will be working with
the following class of compositions, for which the resulting Lagrangian correspondence is in
fact a smooth submanifold.

Definition 2.0.5. We say that the composition L01 ◦L12 is embedded if L12 ×M1 L01 is cut
out transversally (i.e. (L01×L12) t (M−

0 ×∆1×M2)) and the projection π02 : L12×M1L01 →
L01 ◦ L12 ⊂M−

0 ×M2 is an embedding.

Remark 2.0.6. Suppose that the composition L01 ◦ L12 =: L02 is embedded.

(a) By the embedding property, for every (x0, x2) ∈ L02 there is a unique solution
x1 ∈ M1 to (x0, x1, x1, x2) ∈ L01 × L12. Due to the transversality assumption, this
solution is given by a smooth map `1 : L02 →M1.

(b) If L01 and L12 are compact, oriented, and equipped with a relative spin structure,
then L02 is also compact and inherits an orientation and relative spin structure, see
[46].

(c) If π1(L01) and π1(L12) are torsion, then π1(L02) is torsion. If moreover M0 and
M2 are monotone with the same monotonicity constant, then L02 is monotone, see
Section 3.1.

More generally, composition of Lagrangian correspondences is defined under clean inter-
section hypotheses, see [11]. This extension is not needed in the paper, because the version
of Floer cohomology used in this paper is invariant under Hamiltonian isotopy, and after
such an isotopy transversality may always be achieved.1

Composition and duals of Lagrangian correspondences satisfy the following:

(a) (Composition and inversion of graphs) If ϕ01 : M0 → M1 and ϕ12 : M1 → M2 are
symplectomorphisms, then

graph(ϕ01) ◦ graph(ϕ12) = graph(ϕ12 ◦ ϕ01),

graph(ϕ01)
t = graph(ϕ−1

01 ).

(b) (Identity) If L01 ⊂M−
0 ×M1 is a Lagrangian correspondence and ∆j ⊂M−

j ×Mj, j =
0, 1 are the diagonals, then

L01 = ∆0 ◦ L01 = L01 ◦ ∆1.

(c) (Associativity) If L01 ⊂M−
0 ×M1, L12 ⊂M−

1 ×M2, L23 ⊂M−
2 ×M3 are Lagrangian

correspondences, then

(L01 ◦ L12) ◦ L23 = L01 ◦ (L12 ◦ L23),

(L01 ◦ L12)
t = (L12)

t ◦ (L01)
t.

(d) (Intersections) If L01 ⊂ M−
0 × M1 is a Lagrangian correspondence, then for any

Lagrangian submanifolds L0 ⊂M0, L1 ⊂M1 we have a bijection

(L0 ◦ L01) ∩ L1
∼→ L0 ∩ (L1 ◦ Lt01).

1However, one can not necessarily remove all self-intersections of the immersed composition by Hamilton-
ian isotopy on one correspondence. A basic example is the composition of transverse Lagrangian submanifolds
L,L′ ⊂ M . Identifying M ∼= M × {pt} ∼= {pt} ×M the projection L ×M L′ → L ◦ L′ ⊂ {pt} × {pt} maps
the (finite) intersection L ∩ L′ to a point.
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2.1. Generalized Lagrangian correspondences. This subsection describes one resolu-
tion of the composition problem, given by passing to sequences of Lagrangian correspon-
dences.

Definition 2.1.1. Let M,M ′ be symplectic manifolds. A generalized Lagrangian corre-
spondence L from M to M ′ consists of

(a) a sequence N0, . . . , Nr of any length r+1 ≥ 2 of symplectic manifolds with N0 = M
and Nr = M ′ ,

(b) a sequence L01, . . . , L(r−1)r of compact Lagrangian correspondences with L(j−1)j ⊂
N−
j−1 ×Nj for j = 1, . . . , r.

Definition 2.1.2. Let L from M to M ′ and L′ from M ′ to M ′′ be two generalized La-
grangian correspondences. Then we define composition

(L,L′) :=
(
L01, . . . , L(r−1)r, L

′
01, . . . , L

′
(r′−1)r′

)

as a generalized Lagrangian correspondence from M to M ′′. Moreover, we define the dual

Lt :=
(
Lt(r−1)r, . . . , L

t
01

)
.

as a generalized Lagrangian correspondence from M ′ to M .

Using these notions we define the symplectic category Symp# as follows. An extension
of this approach, using Floer cohomology spaces to define a 2-category, is given in Section
6.9.

Definition 2.1.3.

(a) The objects of Symp# are smooth symplectic manifolds M = (M,ω).
(b) The morphisms Hom(M,M ′) of Symp# are generalized Lagrangian correspondences

from M to M ′ modulo the equivalence relation ∼ generated by
(
. . . , L(j−1)j , Lj(j+1), . . .

)
∼
(
. . . , L(j−1)j ◦ Lj(j+1), . . .

)

for all sequences and j such that L(j−1)j ◦ Lj(j+1) is embedded.

(c) The composition of morphisms [L] ∈ Hom(M,M ′) and [L′] ∈ Hom(M ′,M ′′) is
defined by

[L] ◦ [L′] := [(L,L′)] ∈ Hom(M,M ′′).

(d) The identity in Hom(M,M) is the equivalence class [∆M ] of the diagonal ∆M ⊂
M− ×M .

Note that a sequence of Lagrangian correspondences in Hom(M,M ′) can run through
any sequence (Ni)i=1,...,r−1 of intermediate symplectic manifolds of any length r − 1 ∈ N0.
Nevertheless, the composition of two such sequences is always well defined. In (c) the
new sequence of intermediate symplectic manifolds for L ◦ L′ is (N1, . . . , Nr−1, Nr = M ′ =
N ′

0, N
′
1, . . . , N

′
r′−1). This definition descends to the quotient by the equivalence relation

∼ since any equivalences within L and L′ combine to an equivalence within L ◦ L′ . The
diagonal defines an identity since L(r−1)r ◦ ∆m = L(r−1)r is always smooth and embedded.
For a discussion of partially defined operations in much more generality see [20].

Lemma 2.1.4. (a) If La, Lb ⊂ M− ×M ′ are distinct Lagrangian submanifolds, then
the corresponding morphisms [La], [Lb] ∈ Hom(M,M ′) are distinct.
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(b) The composition of smooth Lagrangian correspondences L ⊂ M− ×M ′ and L′ ⊂
M ′− ×M ′′ coincides with the geometric composition, [L] ◦ [L′] = [L ◦ L′] if L ◦ L′ is
embedded.

Proof. To see that La 6= Lb ⊂M− ×M ′ define distinct morphisms note that the projection
to the (possibly singular) Lagrangian π([L]) := L01 ◦ . . .◦L(r−1)r ⊂M−×M ′ is well defined

for all [L] ∈ Hom(M,M ′). The rest follows directly from the definitions. �

Remark 2.1.5. The study of Lagrangian correspondences appeared in the study of Fourier
integral operators by Hörmander and others. Hörmander’s construction associates to any
Fourier integral operator P01 ∈ FIO(Q0, Q1) (which in particular induces a smooth map
C∞(Q0) → C∞(Q1) between smooth functions on the closed manifolds Qi) a Lagrangian
submanifold ΛP01 ∈ T ∗Q−

0 × T ∗Q1. Conversely, any homogeneous2 Lagrangian correspon-
dence L01 ⊂ T ∗Q−

0 ×T ∗Q1 gives rise to a class of operators FIO(L01) ⊂ FIO(Q0, Q1). These
constructions satisfy the property [14, Theorem 4.2.2] that if a pair LP01 ⊂ T ∗Q−

0 × T ∗Q1,
LP12 ⊂ T ∗Q−

1 × T ∗Q2 satisfies

(3)
LP01 × LP12 intersects T ∗Q−

0 × ∆T ∗Q1 × T ∗Q2 transversally and
the projection from the intersection to T ∗Q−

0 × T ∗Q2 is proper,

then

(4) LP01◦P12 = LP01 ◦ LP12 .

Define a category Hörm#, whose

• objects are compact smooth manifolds,
• morphisms are sequences of Fourier integral operators, modulo the equivalence re-

lation that is generated by (. . . , P01, P12, . . .) ∼ (. . . , P01 ◦ P12, . . .) for ΛP01 ,ΛP12

satisfying (3).

The category Hörm# admits a symbol functor σ to the symplectic category Symp#, given
on the level of objects by Q 7→ T ∗Q, and on morphisms by assigning to each Fourier
integral operator in the sequence the associated Lagrangian correspondence. This remark
is continued in Remark 6.9.8 (a).

We conclude this subsection by mentioning special cases of generalized Lagrangian cor-
respondences. The first is the case M = M ′, which we will want to view separately as a
cyclic correspondence, without fixing the “base point” M .

Definition 2.1.6. A cyclic generalized Lagrangian correspondence L consists of

(a) a cyclic sequence N0, N1, . . . , Nr, Nr+1 = N0 of symplectic manifolds of any length
r + 1 ≥ 1,

(b) a sequence L01, . . . , Lr(r+1) of compact Lagrangian correspondences with Lj(j+1) ⊂
N−
j ×Nj+1 for j = 0, . . . , r.

The second special case is M = {pt}, which generalizes the concept of Lagrangian sub-
manifolds. Namely, note that any Lagrangian submanifold L ⊂ M ′ can be viewed as
correspondence L ⊂ {pt}− ×M ′.

2A Lagrangian correspondence L01 is called homogeneous if it lies in the complement of the zero sections,
L01 ⊂ (T ∗Q−

0 \ 0Q0 ) × (T ∗Q1 \ 0Q1 ), and if it is conic, i.e. invariant under positive scalar multiplication in
the fibres.
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Definition 2.1.7. Let M ′ be a symplectic manifold. A generalized Lagrangian submanifold
L of M ′ is a generalized Lagrangian correspondence from a point M = {pt} to M ′. That
is, L consists of

(a) a sequence N−r, . . . , N0 of any length r ≥ 0 of symplectic manifolds with N−r = {pt}
a point and N0 = M ′,

(b) a sequence L(−r)(−r+1), . . . , L(−1)0 of compact Lagrangian correspondences L(i−1)i ⊂
N−
i−1 ×Ni.

2.2. Graded Lagrangians. Following Kontsevich and Seidel [38] one can define graded
Lagrangian subspaces as follows. Let V be a symplectic vector space and let Lag(V ) be
the Lagrangian Grassmannian of V . An N -fold Maslov covering for V is a ZN -covering
LagN (V ) → Lag(V ) associated to the Maslov class in π1(Lag(V )). A grading of a La-

grangian subspace Λ ∈ Lag(V ) is a lift to Λ̃ ∈ LagN (V ).

Remark 2.2.1. (a) For any basepoint Λ0 ∈ Lag(V ) we obtain an N -fold Maslov cover

LagN (V,Λ0) given as the homotopy classes of paths Λ̃ : [0, 1] → Lag(V ) with base

point Λ̃(0) = Λ0, modulo loops of Maslov index N . The covering is Λ̃ 7→ Λ̃(1). The

base point has a canonical grading given by the constant path Λ̃0 ≡ Λ0. Any path
between basepoints Λ0,Λ

′
0 induces an identification LagN (V,Λ0) → LagN (V,Λ′

0).
(b) For the diagonal ∆ ⊂ V − × V we fix a canonical grading and orientation as follows.

We identify the Maslov coverings LagN (V − × V,Λ− × Λ) and LagN (V − × V,∆) by
concatenation of the paths

(5) (eJtΛ− × Λ)t∈[0,π/2], ({(tx+ Jy, x+ tJy)|x, y ∈ Λ})t∈[0,1],

where J ∈ End(V ) is an ω-compatible complex structure on V (i.e. J 2 = − Id and
ω(·, J ·) is symmetric and positive definite). In particular, this induces the canonical
grading on the diagonal ∆ with respect to any Maslov covering LagN (V −×V,Λ−×Λ),
by continuation. Any identification LagN (V −×V,Λ−

0 ×Λ0) → LagN (V −×V,Λ−
1 ×Λ1)

induced by a path in LagN (V ) maps the graded diagonal to the graded diagonal,
since the product γ−×γ of any loop γ : S1 → Lag(V ) has Maslov index 0. Similarly,
we define a canonical orientation on ∆ by choosing any orientation on Λ, giving the
product Λ− × Λ the product orientation (which is well defined), and extending the
orientation over the path (5). This is related to the orientation induced by projection
of the diagonal on the second factor by a sign (−1)n(n−1)/2, where dim(M) = 2n.

Let M be a symplectic manifold and let Lag(M) → M be the fiber bundle whose fiber
over m ∈ M is the space Lag(TmM) of Lagrangian subspaces of TmM . An N -fold Maslov
covering of M is an N -fold cover LagN (M) → Lag(M) whose restriction to each fiber is
an N -fold Maslov covering LagN (TmM) → Lag(TmM). Any choice of Maslov cover for
R

2n induces a one-to-one correspondence between N -fold Maslov covers of M and SpN (2n)-
structures on M . Here 2n = dimM and SpN (2n) is the N -fold covering group of Sp(2n)
associated to the Maslov class in π1(Sp(2n)). (Explicitly, this is realized by using the
identity as base point.) An SpN (2n)-structure on M is an SpN (2n)-bundle FrN (M) → M
together with an isomorphism FrN (M) ×SpN (2n) Sp(2n) ' Fr(M) to the symplectic frame

bundle of M . It induces the N -fold Maslov covering

LagN (M) = FrN (M) ×SpN (2n) LagN (R2n).
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Graded symplectic manifolds (i.e. equipped with Maslov coverings) form a structure similar
to that of a tensor category, that is, the notions of duals, disjoint union, and Cartesian
product extend naturally to the graded setting. The dual LagN (M−) of a Maslov covering
LagN (M) → Lag(M) is the same space with the inverted ZN -action. We denote this
identification by

(6) LagN (M) → LagN (M−), Λ̃ 7→ Λ̃−.

For SpN -structures FrN (M0) and FrN (M1) the embedding

SpN (2n0) ×ZN
SpN (2n1) → SpN (2n0 + 2n1)

induces an SpN (2n0 +2n1)-structure FrN (M0×M1) on the product and an equivariant map

(7) FrN (M0) × FrN (M1) → FrN (M0 ×M1)

covering the inclusion Fr(M0) × Fr(M1) → Fr(M0 ×M1). The corresponding product of
N -fold Maslov covers on M0 ×M1 is the N -fold Maslov covering

LagN (M0 ×M1) :=
(
FrN (M0) × FrN (M1)

)
×SpN (2n0)×SpN (2n1) LagN (R2n0 × R

2n1).

Combining this product with the dual yields a Maslov covering for M−
0 ×M1 which we can

identify with

LagN (M−
0 ×M1) =

(
FrN (M0) × FrN (M1)

)
×SpN (2n0)×SpN (2n1) LagN (R2n0,− × R

2n1).

Finally, the inclusion Lag(M0) × Lag(M1) → Lag(M0 ×M1) lifts to a map

(8) LagN (M0) × LagN (M1) → LagN (M0 ×M1), (L̃0, L̃1) 7→ L̃0 ×N L̃1

with fiber ZN . It is defined by combining the product (7) with the basic product of the
linear Maslov cover LagN (R2n0) × LagN (R2n1) → LagN (R2n0 × R

2n1).

Definition 2.2.2. (a) Let M0, M1 be two symplectic manifolds equipped with N -fold
Maslov covers and let φ : M0 → M1 be a symplectomorphisms. A grading of
φ is a lift of the canonical isomorphism Lag(M0) → Lag(M1) to an isomorphism
φN : LagN (M0) → LagN (M1), or equivalently, a lift of the canonical isomorphism
Fr(M0) → Fr(M1) of symplectic frame bundles to an isomorphism FrN (M0) →
FrN (M1).

(b) Let L ⊂M be a Lagrangian submanifold and M be equipped with an N -fold Maslov
cover. A grading of L is a lift σNL : L→ LagN (M) of the canonical section σL : L→
Lag(M).

Remark 2.2.3. (a) The set of graded symplectomorphisms forms a group under compo-
sition. In particular, the identity on M has a canonical grading, given by the identity
on LagN (M).

(b) Given a one-parameter family φt of symplectomorphisms with φ0 = IdM , we obtain
a grading of φt by continuity.

(c) Any choice of grading on the diagonal ∆̃ ∈ LagN (R2n,− × R
2n) induces a bijection

between gradings of a symplectomorphism φ : M0 → M1 and gradings of its graph
graph(φ) ⊂M−

0 ×M1 with respect to the induced Maslov cover LagN (M−
0 ×M1). In-

deed, the graph of the grading, graph(φN ) ⊂ (FrN (M0)×FrN (M1))|graph(φ) is a prin-

cipal bundle over graph(φ) with structure group SpN (2n), 2n = dimM0 = dimM1.
The graded diagonal descends under the associated fiber bundle construction with
graph(φN ) to a section of LagN (M−

0 ×M1)|graph(φ) lifting graph(φ). Moreover, this
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construction is equivariant for the transitive action of H 0(M0,ZN ) on both the set
of gradings of φ and the set of gradings of graph(φ).

We will refer to this as the canonical bijection when using the canonical grading
∆̃ ∈ LagN (R2n,−×R

2n) in Remark 2.2.1. In particular, the diagonal in M−×M has
a canonical grading induced by the canonical bijection from the canonical grading
of the identity on M .

(d) Any grading σNL of a Lagrangian submanifold L ⊂M induces a grading of L ⊂M−

via the diffeomorphism LagN (M−) → LagN (M).
(e) Given graded Lagrangian submanifolds L0 ⊂ M0, L1 ⊂ M1, the product L0 × L1 ⊂

M0 ×M1 inherits a grading from (8).
(f) Given a graded symplectomorphism φ : M0 → M1 and a graded Lagrangian sub-

manifold L ⊂ M0, the image φ(L) ⊂ M1 inherits a grading by composition σNφ(L) =

φN ◦ σNL .

Example 2.2.4. (a) Let Lag2(M) be the bundle whose fiber over m is the space of ori-
ented Lagrangian subspaces of TmM . Then Lag2(M) → Lag(M) is a 2-fold Maslov
covering. A Lag2(M)-grading of a Lagrangian L ⊂M is equivalent to an orientation
on L.

(b) By [38, Section 2], any symplectic manifold M with H 1(M) = 0 and minimal Chern
number NM admits an N -fold Maslov covering LagN (M) iff N divides 2NM . Any
Lagrangian with minimal Maslov number NL admits a LagN (M)-grading iff N di-
vides NL. In particular, if L is simply connected, then NL = 2NM and L admits a
Lag2NM (M) grading.

(c) Suppose that [ω] is integral, [ω] = (1/l)c1(TM), and L is a line bundle with con-
nection ∇ and curvature curv(∇) = (2π/i)ω. This induces a 2l-fold Maslov cover
Lag2l(M) → Lag(M), see [38, Section 2b]. Let L ⊂M be a Bohr-Sommerfeld mono-
tone Lagrangian as in Remark 3.1.4. A grading of L is equivalent to a choice of (not
necessarily horizontal) section of L|L whose l-th tensor power is φK

L ; that is, a choice

of the section exp(2πiψ)φLL in (16).

Definition 2.2.5. Let Λ0,Λ1 ⊂ V be a transverse pair of Lagrangian subspaces in a sym-
plectic vector space V and let Λ̃0, Λ̃1 ∈ LagN (V ) be gradings. The degree d(Λ̃0, Λ̃1) ∈ ZN

is defined as follows. Let γ̃0, γ̃1 : [0, 1] → LagN (V ) be paths with common starting point

γ̃0(0) = γ̃1(0) and end points γ̃j(1) = Λ̃j . Let γj : [0, 1] → Lag(V ) denote their image under

the projection LagN (V ) → Lag(V ) and define

(9) d(Λ̃0, Λ̃1) := 1
2 dim(Λ0) + I(γ0, γ1) mod N,

where I(γ0, γ1) denotes the Maslov index for the pair of paths as in [43, 33].

Let us recall from [33] that the Maslov index for a pair of paths with regular crossings
(in particular with a finite set of crossings C := {s ∈ [0, 1] | γ0(s)∩ γ1(s) 6= {0}}) is given by
the sum of crossing numbers with the endpoints weighted by 1/2,

I(γ0, γ1) =
1

2

∑

s∈C∩{0,1}

sign(Γ(γ0, γ1, s)) +
∑

s∈C∩(0,1)

sign(Γ(γ0, γ1, s)).

Each crossing operator Γ(γ0, γ1, s) is defined on v ∈ γ0(s) ∩ γ1(s) by fixing Lagrangian
complements γ0(s)

c, γ1(s)
c of γ0(s), γ1(s) and setting

(10) Γ(γ0, γ1, s)v = d
dt

∣∣
t=0

ω(v, w(t) − w′(t))
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where w(t) ∈ γ0(s)
c such that v+w(t) ∈ γ0(s+t) and w′(t) ∈ γ1(s)

c such that v+w′(s+t) ∈
γ1(s).

Remark 2.2.6. The degree can alternatively be defined by fixing γ̃0 ≡ Λ̃0 and choosing
a path γ̃ : [0, 1] → LagN (V ) from γ̃(0) = Λ̃0 to γ̃(1) = Λ̃1 such that the crossing form
Γ(γ,Λ0, 0) of the underlying path γ : [0, 1] → Lag(V ) is positive definite at s = 0. Then the
degree

d(Λ̃0, Λ̃1) = dimΛ0
2 + I(Λ0, γ) = −

∑

s∈(0,1)

sign(Γ(γ,Λ0, s)) = −I ′(γ,Λ0) mod N

is given by the Maslov index I ′ of γ|(0,1) (not counting the endpoints) relative to Λ0. Equiv-
alently, we have

d(Λ̃0, Λ̃1) = I ′(γ−1,Λ0) mod N

for the reversed path γ−1 : [0, 1] → Lag(V ) from γ(0) = Λ1 to γ(1) = Λ0 such that the
crossing form Γ(γ−1,Λ0, 1) is negative definite at s = 1.

Lemma 2.2.7. (Index theorem for once-punctured disks) Let Λ0,Λ1 ⊂ V be a transverse

pair of Lagrangian subspaces with gradings Λ̃0, Λ̃1 ∈ LagN (V ). Then for any smooth path

of graded Lagrangian subspaces Λ̃ : [0, 1] → LagN (V ) with endpoints Λ̃(j) = Λ̃j, j = 0, 1 we
have

d(Λ̃0, Λ̃1) = Ind(DV,Λ) mod N.

Here DV,Λ is any Cauchy-Riemann operator in V on the disk D with one outgoing strip-

like end (0,∞) × [0, 1] ↪→ D and with boundary conditions given by Λ (the projection of Λ̃
to Lag(V )) such that Λ(j) = Λj is the boundary condition over the boundary components
(0,∞) × {j}, j = 0, 1 of the end.

Proof. It suffices to prove the index identity for a fixed path Λ̃. Indeed, if Λ̃′ is any other path
with the same endpoints then we have Ind(DV,Λ)−Ind(DV,Λ′) = Ind(DV,Λ)+Ind(DV,−Λ′) =
Ind(DV,Λ#(−Λ′)) by gluing. Here the last Cauchy-Riemann operator is defined on the disk
with no punctures and with boundary conditions given by the loop Λ#(−Λ′). Since the

loop lifts to a loop Λ̃#(−Λ̃′) in LagN (V ), its Maslov index (and thus index) is 0 modulo N .

By Remark 2.2.6, the degree can be defined by a path Λ̃ from Λ̃1 to Λ̃0 whose projection
Λ has negative definite crossing form at s = 1. The sum of crossing numbers in d(Λ̃0, Λ̃1) =∑

s∈(0,1) sign(Γ(Λ,Λ0, s)) is the Maslov index IH(Λ) in [37, Lemma 11.11] and hence equals

to the Fredholm index Ind(DV,Λ) over the half space, or the conformally equivalent disk
with strip-like end. This conformal isomorphism takes the boundary ends (−∞,−1) resp.
(1,∞) in the half space {Im z ≥ 0} (over which Λ equals to Λ1 resp. Λ0) to {1} × (1,∞)
resp. {0} × (1,∞) in the strip-like end. �

Lemma 2.2.8. The degree map satisfies the following properties.

(a) (Additivity) If V = V ′ × V ′′ then

d(Λ̃′
0 ×N Λ̃′′

0 , Λ̃
′
1 ×N Λ̃′′

1) = d(Λ̃′
0, Λ̃

′
1) + d(Λ̃′′

0 , Λ̃
′′
1)

for Λ̃′
j, Λ̃

′′
j graded Lagrangian subspaces in V ′, V ′′ respectively, j = 0, 1.

(b) (Multiplicativity) For Λ̃0, Λ̃1 graded Lagrangian subspaces and any c ∈ ZN

d(Λ̃0, c · Λ̃1) = c+ d(Λ̃0, Λ̃1).
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(c) (Skewsymmetry) For Λ̃0, Λ̃1 graded Lagrangian subspaces

d(Λ̃0, Λ̃1) + d(Λ̃1, Λ̃0) = dimΛ0 = d(Λ̃0, Λ̃1) + d(Λ̃−
0 , Λ̃

−
1 ).

(d) (Diagonal) For a transverse pair Λ̃0, Λ̃1 of graded Lagrangian subspaces in V and ∆̃
the canonically graded diagonal in V − × V

d(∆̃, Λ̃−
0 ×N Λ̃1) = d(Λ̃0, Λ̃1).

Proof. The first three properties are standard, see [38, Section 2d]. We prove the diag-
onal property to make sure all our sign conventions match up. For that purpose we fix
L̃ ∈ LagN (V ) and choose the following paths γ̃.. of graded Lagrangian subspaces (with
underlying paths γ.. of Lagrangian subspaces):

• γ̃0 : [−1, 1] → LagN (V ) from γ̃0(−1) = L̃ to γ̃0(1) = Λ̃0 such that γ̃0|[−1,0] ≡ L̃,

• γ̃1 : [−1, 1] → LagN (V ) from γ̃1(−1) = L̃ to γ̃1(1) = Λ̃1, such that γ1|[−1/2,0] ≡ JL t

L and γ1|[−1,−1/2] is a smoothing of t 7→ eπ(1+t)JL.

• γ̃ : [−1, 1] → LagN (V − × V ) starting with γ̃|[−1,−1/2] = (γ̃−1 ×N γ̃0)|[−1,−1/2], ending

at γ̃|[0,1] ≡ ∆̃, and such that γ|[− 1
2
,0] is a smoothing of t 7→ {((2t+1)x+Jy, x+(2t+

1)Jy)|x, y ∈ L}. (The lift to graded subspaces matches up since γ|[−1,0] is exactly

the path of (5) which defines ∆̃ by connecting it to L̃− × L̃.)

Note that we have I(γ0, γ1)|[−1,0] = −1
2 dimΛ0 and I(γ, γ−0 ×γ1)|[−1,0] = I(γ−1 , γ

−
0 )|[−1,0]+

I(γ0, γ1)|[−1,0] = −dimΛ0 since γ|[− 1
2
,0] is transverse to L− × JL. With these preparations

we can calculate

d(Λ̃0, Λ̃1) = 1
2 dimΛ0 + I(γ0, γ1) = I(γ0, γ1)

∣∣
[0,1]

= I(∆, γ−0 × γ1)
∣∣
[0,1]

= dimΛ0 + I(γ, γ−0 × γ1) = d(∆̃, Λ̃−
0 ×N Λ̃1).

Here the identity of the Maslov indices over the interval [0, 1] follows from identifying the

intersections K(s) := γ0 ∩ γ1
∼= ∆∩ (γ−0 × γ1) and the crossing forms Γ(s), Γ̂(s) : K(s) → R

at regular crossings s ∈ [0, 1] (after a homotopy of the paths to regular crossings). Fix
Lagrangian complements γ0(s)

c and γ1(s)
c, then for v ∈ K(s) pick wi(t) ∈ γi(s)

c such that
v + wi(t) ∈ γi(s+ t). For the corresponding vector v̂ = (v, v) ∈ ∆ ∩ (γ−0 × γ1) we can pick
ŵ(t) = (0, 0) ∈ ∆c satisfying v̂ + ŵ(t) ∈ ∆ and ŵ′(t) = (w0, w1) ∈ γ0(s)

c × γ1(s)
c satisfying

v̂ + ŵ′(t) ∈ (γ0 × γ1)(s+ t) to identify the crossing forms

Γ̂(s)v̂ = d
dt

∣∣
t=0

(−ω ⊕ ω)(v̂, ŵ(t) − ŵ′(t))

= d
dt

∣∣
t=0

(
−ω(v,−w0(t)) + ω(v,−w1(t))

)

= d
dt

∣∣
t=0

ω(v, w0(t) − w1(t)) = Γ(s)v.

�

If L0, L1 ⊂ M are LagN (M)-graded Lagrangians and intersect transversally then one
obtains a degree map

I(L0, L1) := L0 ∩ L1 → ZN , x 7→ |x| := d(σNL0
(x), σNL1

(x)).

More generally, if L0, L1 do not necessarily intersect transversally, then we can pick a
Hamiltonian perturbation H : [0, 1] × M → R such that its time 1 flow φ1 : M → M
achieves transversality φ1(L0) t L1. Then the Hamiltonian isotopy and the grading on L0



FUNCTORIALITY FOR LAGRANGIAN CORRESPONDENCES IN FLOER THEORY 15

induce a grading on φ1(L0), which is transverse to L1. The degree map is then defined on
the perturbed intersection points, d : I(L0, L1) := φ1(L0) ∩ L1 → ZN .

2.3. Graded Lagrangian correspondences. In this section we extend the grading and
degree constructions to generalized Lagrangian correspondences and discuss their behaviour
under geometric composition and insertion of the diagonal.

Definition 2.3.1. Let M and M ′ be symplectic manifolds equipped with N -fold Maslov
coverings. Let L = (L01, . . . , L(r−1)r) be a generalized Lagrangian correspondence from

M to M ′ (i.e. L(j−1)j ⊂ M−
j−1 ×Mj for a sequence M = M1, . . . ,Mr = M ′ of symplectic

manifolds). A grading on L consists of a collection of N -fold Maslov covers LagN (Mj) →Mj

and gradings of the Lagrangian correspondences L(j−1)j with respect to LagN (M−
j−1×Mj),

where the Maslov covers on M1 = M and Mr = M ′ are the fixed ones.

A pair of graded generalized Lagrangian correspondences L1 and L2 from M to M ′

(with fixed Maslov coverings) defines a cyclic Lagrangian correspondence L1#(L2)
t, which

is graded in the following sense.

Definition 2.3.2. Let L = (L01, . . . , Lr(r+1)) be a cyclic generalized Lagrangian corre-

spondence (i.e. Lj(j+1) ⊂ M−
j × Mj+1 for a cyclic sequence M0,M1, . . . ,Mr+1 = M0 of

symplectic manifolds). An N -grading on L consists of a collection of N -fold Maslov covers
LagN (Mj) → Mj and gradings of the Lagrangian correspondences Lj(j+1) with respect to

LagN (M−
j ×Mj+1).

In the following, we will consider a cyclic generalized Lagrangian correspondence L and
assume that it intersects the generalized diagonal transversally, i.e.

(11)
(
L01 × L12 × . . . × Lr(r+1)

)
t
(
∆−
M0

× ∆−
M1

× . . . × ∆−
Mr

)T
,

where ∆−
M ⊂M ×M− denotes the (dual of the) diagonal and M0×M−

0 ×M1× . . .×M−
r →

M−
0 ×M1 × . . . ×M−

r ×M0, Z 7→ ZT is the transposition of the first to the last factor.
In section 3.3 this transversality will be achieved by a suitable Hamiltonian isotopy. It
ensures that the above transverse intersection cuts out a finite set, which we identify with
the generalized intersection points

I(L) := ×∆M0

(
L01 ×∆M1

L12 . . .×∆Mr
Lr(r+1)

)

=
{
x = (x0, . . . , xr) ∈M0 × . . .×Mr

∣∣ (x0, x1) ∈ L01, . . . , (xr, x0) ∈ Lr(r+1)

}
.

Remark 2.3.3. Consider two cyclic generalized Lagrangian correspondences

L = (L01, . . . , L(j−1)j , Lj(j+1), . . . , Lr(r+1)),

L′ = (L01, . . . , L(j−1)j ◦ Lj(j+1), . . . , Lr(r+1))

that are equivalent in the category Symp#, i.e. the composition L(j−1)j◦Lj(j+1) is embedded
in the sense of Definition 2.0.5. Then the generalized intersection points

I(L) =
{
(. . . , xj−1, xj , xj+1, . . .) ∈ . . .×Mj−1 ×Mj ×Mj+1 . . .

∣∣
. . . , (xj−1, xj) ∈ L(j−1)j, (xj , xj+1) ∈ Lj(j+1), . . .

}

=
{
(. . . , xj−1, xj+1, . . .) ∈ . . .×Mj−1 ×Mj+1 . . .

∣∣
. . . , (xj−1, xj+1) ∈ L(j−1)j ◦ Lj(j+1), . . .

}
= I(L′)
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are canonically identified, since the intermediate point xj ∈ Mj with (xj−1, xj) ∈ L(j−1)j

and (xj , xj+1) ∈ Lj(j+1) is uniquely determined by the pair (xj−1, xj+1) ∈ L(j−1)j ◦Lj(j+1).

Now an N -grading on L induces an N -fold Maslov covering on M := M−
0 ×M1 × . . . ×

Mr ×M−
r ×M0 and a grading of L := L01 × L12 × . . . × Lr(r+1). In addition, we have a

grading on ∆T := (∆−
M0

×∆−
M1

× . . .×∆−
Mr

)T from the canonical grading on each factor. In

order to define a degree we then identify generalized intersection points x = (x0, x1, . . . , xr)
with the actual intersection points x = (x0, x1, x1, . . . , xr, xr, x0) ∈ L ∩ ∆T .

Definition 2.3.4. Let L be a graded cyclic generalized Lagrangian correspondence L that
is transverse to the diagonal (11). Then the degree is

I(L) → ZN , x 7→ |x| = d(σNL (x), σN∆T (x)).

Lemma 2.3.5. Alternatively, the degree is defined as follows:

(a) Pick any tuple of Lagrangian subspaces Λ′
i ∈ Lag(TxiMi), Λ′′

i ∈ Lag(TxiM
−
i ), i =

0, . . . , r whose product is transverse to the diagonal, Λ′
i × Λ′′

i t ∆TxiMi. Then there

exists a path (unique up to homotopy) γ : [0, 1] → Lag(TxM) from γ(0) = TxL
to γ(1) = Λ′′

0 × Λ′
1 × . . . × Λ′

r × Λ′′
r × Λ′

0 that is transverse to the diagonal at all

times, γ(t) t Tx∆
T . We lift the grading σNL (x) ∈ LagN (TxM) along this path and

pick preimages under the graded product map (8) to define Λ̃′
i ∈ LagN (TxiMi) and

Λ̃′′
i ∈ LagN (TxiM

−
i ). Then

|x| =

r∑

i=0

d(Λ̃′
i, Λ̃

′′−
i ).

(b) If L has even length r + 1 ∈ 2N then it defines an N -fold Maslov cover on M̃ :=
M−

0 ×M1 ×M−
2 × . . .×Mr and a pair of graded Lagrangian submanifolds,

L(0) := L01 × L23 × . . . × L(r−1)r ⊂ M̃ ,

L(1) := (L12 × L34 × . . .× Lr(r+1))
T ⊂ M̃−,

where we denote by M−
1 × . . . ×M−

r ×M0 → M0 ×M−
1 × . . . ×M−

r , Z 7→ ZT the
transposition of the last to the first factor. If L has odd length r + 1 ∈ 2N + 1 we
insert the diagonal ∆M0 ⊂M−

0 ×M0 = M−
r+1×M0 (with its canonical grading) before

defining a pair of graded Lagrangian submanifolds as above. By (11) the Lagrangians
intersect transversally L(0) t L−

(1), and this intersection is canonically identified with

I(L). Then for x ∈ I(L) corresponding to y ∈ L(0) ∩ L−
(1) we have

|x| = |y| = d(σNL(0)
(y), σNL(1)

(y)−).

Proof. In (a) we use the fact that the path γ has zero Maslov index to rewrite

d(σNL (x), σN∆T (x)) = d(Λ̃′
0 ×N Λ̃′′

0 ×N . . .×N Λ̃′
r ×N Λ̃′′

r , ∆̃
−
Tx0M0

×N . . .×N ∆̃−
TxrMr

),

where we moreover transposed the factors. Now by Lemma 2.2.8 the right hand side can
be written as the sum over d(Λ̃′

i ×N Λ̃′′
i , ∆̃

−
TxiMi

) = d(Λ̃′
i, Λ̃

′′−
i ).

In (b) note that a reordering of the factors identifies the pair of graded Lagrangians
(L(0) × L(1),∆

−
fM ) with (L,∆T ) for r odd. So Lemma 2.2.8 implies

d(σNL (x), σN∆T (x)) = d(σNL(0)
(y) ×N σNL(1)

(y), ∆̃−

T(y,y)
fM ) = d(σNL(0)

(y), σNL(1)
(y)−).
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For r even the same argument proves

d(σNL(0)
(y), σNL(1)

(y)−) = d
(
σNL (x) ×N ∆̃Tx0M0 , (∆̃

−
Tx0M0

× . . . × ∆̃−
TxrMr

× ∆̃−
Tx0M0

)T ),

which equals to d(σNL (x), σN
∆T (x)) by Lemma 2.3.6 (b) below. �

The following Lemma describes the effect of inserting a diagonal on the grading of gener-
alized Lagrangian correspondences. Part (a) addresses noncyclic correspondences, whereas
(b) applies to cyclic correspondences with Λ = T(x0,x1,...,xr,x0)(L01 × L12 × . . . × Lr(r+1)),

K = T(x0,x0,x1,...,xr)(∆
−
M0

×∆−
M1

× . . .×∆−
Mr

), V0 = Tx0M0, and V1 = T(x1,...,xr)(M1 ×M−
1 ×

. . .×Mr ×M−
r ).

Lemma 2.3.6. Let V0, V1, V2 be symplectic vector spaces.

(a) Let Λ̃0 ⊂ LagN (V0), Λ̃01 ⊂ LagN (V −
0 × V1), Λ̃12 ⊂ LagN (V −

1 × V2), and Λ̃2 ⊂
LagN (V −

2 ) be graded Lagrangian subspaces. If the underlying Lagrangian subspaces
are transverse then

d(Λ̃0 ×N Λ̃12, Λ̃
−
01 ×N Λ̃−

2 ) = d(Λ̃0 ×N ∆̃1 ×N Λ̃2, Λ̃
−
01 ×N Λ̃−

12).

(b) Let Λ̃ ⊂ LagN (V −
0 × V1 × V0) and K̃ ⊂ LagN (V0 × V −

0 × V1) be graded Lagrangian
subspaces. If the underlying Lagrangian subspaces are transverse then

d(Λ̃ ×N ∆̃0, (K̃ ×N ∆̃−
0 )T ) = d(Λ̃, K̃T ),

with the transposition V0 ×W →W × V0, Z 7→ ZT .

Proof. To prove (a) pick a path γ0112 : [0, 1] → Lag(V0 × V −
1 × V1 × V −

2 ) from γ0112(0) =
Λ−

01 × Λ−
12 to a split Lagrangian subspace γ0112(1) = Λ′

0 × Λ′
1 × Λ′′

1 × Λ′
2 that is transverse

to Λ0 × ∆1 × Λ2 at all times and hence has Maslov index I(γ0112,Λ0 × ∆1 × Λ2) = 0. We
can homotope this path with fixed endpoints to γ0112 = γ01 × γ12 : [0, 1] → Lag(V0 ×V −

1 )×
Lag(V1×V −

2 ) that may intersect Λ0×∆1×Λ2 but still has vanishing Maslov index. We lift
the grading along the paths γ01 and γ12 and pick preimages under the graded product map
(8) to obtain gradings Λ̃′

0 ∈ LagN (V0), Λ̃′
1 ∈ LagN (V −

1 ), Λ̃′′
1 ∈ LagN (V1), Λ̃′

2 ∈ LagN (V −
2 ).

With these we calculate, using Lemma 2.2.8

d(Λ̃0 ×N Λ̃12, Λ̃
−
01 ×N Λ̃−

2 ) = d(Λ̃0 ×N Λ̃′′−
1 ×N Λ̃′−

2 , Λ̃
′
0 ×N Λ̃′

1 ×N Λ̃−
2 )

= d(Λ̃0, Λ̃
′
0) + d(Λ̃′′−

1 , Λ̃′
1) + d(Λ̃′−

2 , Λ̃
−
2 )

= d(Λ̃0, Λ̃
′
0) + d(∆̃1, Λ̃

′
1 ×N Λ̃′′

1) + d(Λ̃2, Λ̃
′
2)

= d(Λ̃0 ×N ∆̃1 ×N Λ̃2, Λ̃
′
0 ×N Λ̃′

1 ×N Λ̃′′
1 ×N Λ̃′

2)

= d(Λ̃0 ×N ∆̃1 ×N Λ̃2, Λ̃
−
01 ×N Λ̃−

12).

The first and last degree identity are due to the vanishing of the Maslov index

0 = I(Λ0 × ∆1 × Λ2, γ01 × γ12) = I(Λ0 × γ−12, γ01 × Λ−
2 ) = 0.

The identity of these Maslov indices follows from identifying the intersections K(s) := (Λ0×
γ−12(s))∩(γ01(s)×Λ−

2 ) ∼= (Λ0×∆1×Λ2)∩(γ01×γ12) and the crossing form Γ(s), Γ̂(s) : K(s) →
R given by (10) at regular crossings s ∈ [0, 1]. Fix Lagrangian complements γ01(s)

c ⊂
V0 × V −

1 and γ12(s)
c ⊂ V1 × V −

2 , then for v = (v0, v1, v2) ∈ K(s) we can pick (w1, w2)(t) ∈
γ12(s)

c such that v + (0, w1, w2)(t) ∈ Λ0 × γ12(s + t) and (w′
0, w

′
1)(t) ∈ γ01(s)

c such that
v + (w′

0, w
′
1, 0)(t) ∈ γ01(s + t) × Λ2. For the corresponding vector v̂ = (v0, v1, v1, v2) ∈
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(Λ0×∆1×Λ−
2 )∩(γ−01×γ−12) we have v̂+(0, 0, 0, 0) ∈ (Λ0×∆1×Λ2) and v̂+(w′

0, w
′
1, w1, w2)(t) ∈

(γ01 × γ12)(s+ t). With this we identify the crossing forms

Γ̂(s)v̂ = d
dt

∣∣
t=0

(ω0 ⊕−ω1 ⊕ ω1 ⊕−ω2)
(
v̂, (0, 0, 0, 0) − (w′

0, w
′
1, w1, w2)(t)

)

= d
dt

∣∣
t=0

(
−ω0(v0, w

′
0) − ω1(v1, w1 − w′

1) + ω2(v2, w2)
)

= d
dt

∣∣
t=0

(ω0 ⊕−ω1 ⊕ ω2)
(
v, (0, w1, w2)(t) − (w′

0, w
′
1, 0)(t)

)
= Γ(s)v.

This proves (a). To prove (b) we pick a path γ : [0, 1] → Lag(V −
0 × V1 × V0) from γ(0) = Λ

to a split Lagrangian subspace γ(1) = Λ−
0 × Λ1 × Λ′

0 ∈ Lag(V −
0 ) × Lag(V1) × Lag(V0) that

is transverse to KT at all times and hence has Maslov index

0 = I(γ,KT ) = I(γ × ∆0, (K × ∆−
0 )T ).

Here the equality of Maslov follows directly from the identification of the trivial intersections
(γ × ∆0) ∩ (K × ∆−

0 )T ∼= γ ∩ KT = {0}. Now we can lift the grading along γ to obtain

gradings Λ̃0 ∈ LagN (V0), Λ̃1 ∈ LagN (V1), Λ̃′
0 ∈ LagN (V0). With these we calculate, using

part (a) and the fact that gradings are invariant under simultaneous transposition of both
factors

d(Λ̃ ×N ∆̃0, (K̃ ×N ∆̃−
0 )T ) = d(Λ̃−

0 ×N Λ̃1 ×N Λ̃′
0 ×N ∆̃0, (K̃ ×N ∆̃−

0 )T )

= d(Λ̃′
0 ×N ∆̃0 ×N Λ̃−

0 ×N Λ̃1, ∆̃
−
0 ×N K̃)

= d(Λ̃′
0 ×N K̃−, ∆̃−

0 ×N (Λ̃−
0 ×N Λ̃1)

−)

= d(∆̃0 ×N (Λ̃−
0 ×N Λ̃1), Λ̃

′−
0 ×N K̃)

= d(K̃−, Λ̃′−
0 ×N (Λ̃−

0 ×N Λ̃1)
−)

= d(Λ̃′
0 ×N Λ̃−

0 ×N Λ̃1, K̃)

= d(Λ̃−
0 ×N Λ̃1 ×N Λ̃′

0, K̃
T ) = d(Λ̃, K̃T )

�

In the rest of this section we investigate the effect of Weinstein composition on the
grading of Lagrangian correspondences. This requires a generalization of Viterbo’s index
calculations [43].

First, we lift the composition map to Maslov covers. Let M0,M1,M2 be symplectic
manifolds equipped with N -fold Maslov coverings LagN (Mj), j = 0, 1, 2. We equip the

productsM−
i ×Mj andM−

0 ×M1×M−
1 ×M2 with the induced Maslov coverings LagN (M−

i ×
Mj) resp. LagN (M−

0 ×M1 ×M−
1 ×M2). We denote by

T (M1) ⊂ Lag(M−
0 ×M1 ×M−

1 ×M2)
∣∣
M0×∆M1

×M2

the subbundle whose fibre over (m0,m1,m1,m2) consists of the Lagrangian subspaces
Λ0112 ⊂ T(m0,m1,m1,m2)(M

−
0 ×M1 ×M−

1 ×M2) that are transverse to the diagonal ∆0112 :=
Tm0M0 × ∆Tm1M1 × Tm2M2. The linear composition of Lagrangian subspaces extends a
smooth map

◦ : T (M1) → Lag(M−
0 ×M2), Λ0112 7→ πM0×M2

(
Λ0112 ∩ ∆0112

)
.

The preimage of T (M1) in the Maslov cover will be denoted by

T N (M1) ⊂ LagN (M−
0 ×M1 ×M−

1 ×M2)
∣∣
M0×∆M1

×M2
.



FUNCTORIALITY FOR LAGRANGIAN CORRESPONDENCES IN FLOER THEORY 19

Finally, recall that we have a canonical grading of the diagonal ∆̃M1 ∈ LagN (M−
1 ×M1)

and its dual ∆̃−
M1

∈ LagN (M1 ×M−
1 ), and let us denote another exchange of factors by

LagN (M−
0 ×M2 ×M1 ×M−

1 ) → LagN (M−
0 ×M1 ×M−

1 ×M2), Λ̃ 7→ Λ̃T .

Lemma 2.3.7. The linear composition ◦ : T (M1) → Lag(M−
0 × M2) lifts to a unique

smooth map ◦N : T N (M1) → LagN (M−
0 ×M2) with the property that

(12) ◦N
((

Λ̃02 ×N Λ̃11

)T )
= d(Λ̃11, ∆̃

−
M1

) · Λ̃02.

for all graded Lagrangians Λ̃02 ∈ LagN (M−
0 ×M2) and Λ̃11 ∈ LagN (M1 ×M−

1 ), such that
the underlying Lagrangian Λ11 ∈ Lag(M1 ×M−

1 ) is transverse to the diagonal.

Proof. We denote by Lag(R2n) the Lagrangian Grassmannian in R
2n, write dimMi = 2ni,

and abbreviate R0112 := R
2n0,− × R

2n1 × R
2n1,− × R

2n2 . Let T ⊂ Lag(R0112) be the subset
of Lagrangian subspaces meeting the diagonal R

2n0 ×∆R2n1 ×R
2n2 transversally. The linear

composition map

Lag(R0112) ⊃ T → Lag(R2n0,− × R
2n2), Λ 7→ πR2n0×R2n2

(
Λ ∩ (R2n0 × ∆R2n1 × R

2n2)
)

is Sp(2n0) × Sp(2n1) × Sp(2n2)-equivariant, and lifts to a unique SpN (2n0) × SpN (2n1) ×
SpN (2n2)-equivariant map

(13) LagN (R0112) ⊃ T N → LagN (R2n0,− × R
2n2)

with the property (12). On the other hand, the restriction of Fr(M0)×Fr(M1)×Fr(M1)×
Fr(M2) to M0×∆M1 ×M2 admits a reduction of the structure group to Sp(2n0)×Sp(2n1)×
Sp(2n2), and similarly the restriction

FrN0112 :=
(
FrN (M0) × FrN (M1) × FrN (M1) × FrN (M2)

)∣∣
M0×∆M1

×M2

admits a reduction of the structure group to SpN (2n0)×SpN (2n1)×SpN (2n2). This group
acts on LagN (R0112) by the diagonal action of SpN (2n1) on R

2n1 × R
2n1,−. Finally, we use

the associated fiber bundle construction to identify

LagN (M−
0 ×M1 ×M−

1 ×M2)
∣∣
M0×∆M1

×M2

∼= FrN0112 ×SpN (2n0)×SpN (2n1)×SpN (2n1)×SpN (2n2) LagN (R0112)

∼=
(
FrN (M0) × FrN (M1) × FrN (M2)

)
×SpN (2n0)×SpN (2n1)×SpN (2n2) LagN (R0112)

and

LagN (M−
0 ×M2) =

(
FrN (M−

0 ) × FrN (M2)
)
×SpN (2n0)×SpN (2n2) LagN (R2n0,− × R

2n2).

Then the forgetful map on the first factor and the equivariant map (13) on the second factor
define the unique lift ◦N . �

Now consider two graded Lagrangian correspondences L01 ⊂M−
0 ×M1 and L12 ⊂M−

1 ×
M2 and suppose that the composition L01◦L12 =: L02 ⊂M−

0 ×M2 is smooth and embedded.
The canonical section σL02 : L02 → Lag(M−

0 ×M2) is given by the linear composition ◦
applied to (σL01 × σL12)|L01×∆M1

L12 . The gradings σNL01
, σNL12

induce a grading on L02,

(14) σNL02
:= ◦N

(
σNL01

×N σNL12

)∣∣
L01×∆M1

L12
,

where the map ×N is defined in (8) and we identify L02
∼= L01 ×∆M1

L12.
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Proposition 2.3.8. Let L0 ⊂ M0, L01 ⊂ M−
0 ×M1, L12 ⊂ M−

1 ×M2, and L2 ⊂ M−
2 be

graded Lagrangians such that the composition L01 ◦ L12 =: L02 is embedded. Then, with
respect to the induced grading on L02, the degree map I(L0 × L2, L02) → ZN is the pull-
back of the degree map I(L0 × L12, L01 × L2) → ZN under the canonical identification 3 of
intersection points.

Proof. Suppose for simplicity that Hamiltonian perturbations have been applied to the
Lagrangians L0, L2 such that I(L0 ×L2, L02) (and hence also I(L0 ×L12, L01 ×L2)) is the
intersection of transverse Lagrangians. Then we need to consider (m0,m1,m2) ∈ (L0 ×
L12) ∩ (L01 × L2), which corresponds to (m0,m2) ∈ (L0 × L2) ∩ L02. We abbreviate the
tangent spaces of the Lagrangians by Λj = TmjLj , Λij = T(mi,mj)Lij, and ∆1 = ∆Tm1M1

and their graded lifts by Λ̃j = σNLj
(mj), Λ̃ij = σNLij

(mi,mj), and ∆̃1 = ∆̃Tm1M1 . Then we

claim that

d(Λ̃0 ×N Λ̃12, Λ̃
−
01 ×N Λ̃−

2 ) = d(Λ̃0 ×N ∆̃1 ×N Λ̃2, Λ̃
−
01 ×N Λ̃−

12)

= d(Λ̃0 ×N Λ̃2, Λ̃
−
01 ◦N Λ̃−

12).(15)

The first identity is Lemma 2.3.6. To prove (15) we begin by noting the transverse inter-

section Λ02 t Λ0 × Λ2. We denote Λ̃02 := Λ̃01 ◦N Λ̃12 (hence Λ̃−
02 = Λ̃−

01 ◦N Λ̃−
12) and pick a

path γ̃02 : [0, 1] → LagN (Tm0M
−
0 × Tm2M2) from γ̃02(0) = Λ̃0 ×N Λ̃2 to γ̃02(1) = Λ̃−

02 whose
crossing form with Λ0 × Λ2 at s = 0 is positive definite and hence by Remark 2.2.6

d(Λ̃0 ×N Λ̃2, Λ̃
−
02) = −I ′(γ02,Λ0 × Λ2).

Here I ′ denotes the Maslov index of a pair of paths (the second one is constant), not counting
crossings at the endpoints. Next, fix a complement L11 ∈ Lag(T(m1 ,m1)M1 ×M−

1 ) of the

diagonal. Then both (Λ02 ×N L11)
T and Λ01 ×Λ12 are transverse to Tm0M0 ×∆1 × Tm2M2

and their composition is Λ02. By Lemma 2.3.9 below we then find a path γ0112 and lift it to
γ̃0112 : [0, 1] → LagN (T(m0 ,m1,m1,m2)M

−
0 ×M1 ×M−

1 ×M2) from γ̃0112(0) = [Λ̃02 ×N L̃11]
T

to γ̃0112(1) = Λ̃01 ×N Λ̃12 whose composition ◦(γ0112) = Λ02 is constant and that has no
crossings with Λ0×∆1×Λ2 (by the transversality γ0112∩(Λ0×∆1×Λ2) = Λ02∩(Λ0×Λ2) =

{0}). Here the grading of L̃11 is determined by continuation along this path. Since the
composition ◦(γ0112) is constant this continuation yields

Λ̃02 = ◦N (γ̃0112) = ◦N ((Λ̃02 ×N L̃11)
T ) = d(L̃11, ∆̃

−
1 ) · Λ̃02.

Here we also used (12), and we deduce that d(L̃11, ∆̃
−
1 ) = 0 mod N . Furthermore, we fix

a path γ̃11 : [0, 1] → LagN (T(m1 ,m1)M
−
1 ×M1) from γ̃11(0) = ∆̃1 to γ̃11(1) = L̃−

11 whose
crossing form with ∆1 at s = 0 is positive definite, and thus

−I ′(γ11,∆1) = d(∆̃1, L̃
−
11) = d(L̃11, ∆̃

−
1 ) = 0 mod N.

3Here it suffices to allow for Hamiltonian perturbation on M0 and M2, i.e. replacing L0, L2 with L′
0 :=

φ
H0
1 (L0), L

′
2 := (φH2

1 )−1(L2). Then for every (m0,m2) ∈ (L′
0×L

′
2)∩L02 there is a uniquem1 ∈M1 such that

(m0,m1) ∈ L01, (m1, m2) ∈ L12, and hence (m0,m1, m2) ∈ (L′
0 ×L12)∩ (L01 ×L′

2). The same identification
will be used in (35).
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Now the concatenated path (γ̃02 × γ̃11)
T#γ̃−0112 connects Λ̃0 ×N ∆̃1 ×N Λ̃2 to Λ̃−

01 ×N Λ̃−
12

with positive definite crossing form at s = 0, and (15) can be verified,

d(Λ̃0 ×N ∆̃1 ×N Λ̃2, Λ̃
−
01 ×N Λ̃−

12)

= −I ′((γ02 × γ11)
T#γ−0112,Λ0 × ∆1 × Λ2)

= −I ′(γ02,Λ0 × Λ2) − I ′(γ11,∆1) − I ′(γ−0112,Λ0 × ∆1 × Λ2)

= −I ′(γ02,Λ0 × Λ2) = d(Λ̃0 ×N Λ̃2, Λ̃
−
02).

�

Lemma 2.3.9. Let V0, V1, V2 be symplectic vector spaces, Λ02 ⊂ V −
0 × V2 a Lagrangian

subspace, and denote by
TΛ02 ⊂ Lag(V −

0 × V1 × V −
1 × V2)

the subset of Lagrangian subspaces Λ ⊂ V −
0 ×V1 ×V −

1 ×V2 with Λ t (V0 ×∆V1 ×V2) =: Λ̂02

and π02(Λ̂02) = Λ02. Then TΛ02 is contractible.

Proof. We fix metrics on V0, V1, and V2. Then we will construct a contraction (ρt)t∈[0,1],

ρt : TΛ02 → TΛ02 with ρ0 = Id and ρ1 ≡ Ψ(Λ02 × (∆1)
⊥), where Ψ : V −

0 × V2 × V1 × V −
1 →

V −
0 × V1 × V −

1 × V2 exchanges the factors. To define ρt(Λ) we write Λ = Λ̂02 ⊕ Λ̂11, where

Λ̂11 is the orthogonal complement of Λ̂02 in Λ. Now Λ̂02 is the image of (IdV0 , i1, i1, IdV2) :

Λ02 → V −
0 × V1 × V −

1 × V2 for a linear map i1 : Λ02 → V1 and Λ̂11 is the image of
(j0, IdV1 + j1,−IdV1 + j1, j2) : V1 → V −

0 × V1 × V −
1 × V2 for linear maps ji : V1 → Vi. One

can check that

ρt(Λ) := im
(
IdV0 , t · i1, t · i1, IdV2

)
⊕ im

(
t · j0, IdV1 + t2 · j1,−IdV1 + t2 · j1, t · j2

)

is an element of TΛ02 for all t ∈ [0, 1] and defines a smooth contraction. �

Finally, we identify the index on the two complexes in Theorem 1.0.1, using a result of
Viterbo.

Lemma 2.3.10. Let L0 ⊂ M0, L01 ⊂ M−
0 ×M1, L12 ⊂ M−

1 ×M2, and L2 ⊂ M−
2 be

graded Lagrangians such that the composition L01 ◦ L12 =: L02 is embedded. Consider a
map u02 = (u0, u2) : R × [0, 1] → M0 ×M2 taking boundary values in (L0 × L2, L01 ◦ L12),
and limiting to constants x± as s→ ±∞. Let u012 = (u0, ū1, u2) : R×[0, 1] →M0×M1×M2

be the corresponding map, which takes boundary values in (L0 ×L12, L01 ×L2) and satisfies
∂tū1 = 0. Then the Maslov-Viterbo indices are equal, I(u02) = I(u012).

Proof. We can homotope (u0, u2) and simultaneously ū1 to maps that are constant outside
of the compact subset [0, 1]× [0, 1] ⊂ R× [0, 1]. Let u0112 = (u0, u1, u1, u

T
2 ), where uT2 (s, t) =

u2(s,
1
2 − t), with boundary in (L0 × ∆1 × L2, L01 × L12). Then we have

I(u0112) = I(u02)

by a special case of [43, Proposition 3], applied to the coisotropic submanifold Q = M0 ×
∆1 ×M2. To prove the Lemma it remains to identify the Maslov indices

I(u0112) = I(u012).

For that purpose we need to consider the paths of Lagrangian subspaces given by γ0(s) =
Tu0(s,0)L0, γ01(s) = Tu0(s,1),u(s)L01, γ12(s) = Tu(s),u2(s,0)L12, γ2(s) = Tu2(s,1)L2 for s ∈ [0, 1].

Then the identity of Maslov indices I(γ0×γ12, γ
−
01×γ−2 ) = I(γ0×∆1×γ2, γ

−
01×γ−12) follows

as in Lemma 2.3.6. �
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3. Floer cohomology for Lagrangian correspondences

The main content of this section is a review of the construction of graded Floer cohomol-
ogy in monotone and exact cases by Floer, Oh, and Seidel. In 3.3 we then formalize the
extension of Floer cohomology to sequences of Lagrangian correspondences.

3.1. Monotonicity. Let (M,ω) be a symplectic manifold. Let J (M,ω) denote the space
of compatible almost complex structures on (M,ω). Any J ∈ J (M,ω) gives rise to a
complex structure on the tangent bundle TM ; the first Chern class c1(TM) ∈ H2(M,Z) is
independent of the choice of J . Throughout, we will use the following standing assumptions
on all symplectic manifolds:

(M1): (M,ω) is monotone, that is for some τ ≥ 0

[ω] = τc1(TM).

(M2): If τ > 0 then M is compact. If τ = 0 then M is (necessarily) noncompact but
satisfies “bounded geometry” assumptions as in [37].

Note here that we treat the exact case [ω] = 0 as special case of monotonicity (with
τ = 0). Next, we denote the index map by

c1 : π2(M) → Z, u 7→ (c1, u∗[S
2]).

The minimal Chern number NM ∈ N is the positive generator of its image.
Associated to a Lagrangian submanifold L ⊂ M are the Maslov index and action (i.e.

symplectic area) maps

I : π2(M,L) → Z, A : π2(M,L) → R.

Our standing assumptions on all Lagrangian submanifolds are the following:

(L1): L is monotone, that is

2A(u) = τI(u) ∀u ∈ π2(M,L)

where the τ ≥ 0 is (necessarily) that from (M1).

(L2): L is compact and oriented.

Any homotopy class [u] ∈ π2(M,L) that is represented by a nontrivial J -holomorphic
curve u : (D, ∂D) → (M,L) (for D the unit disk) has positive action A([u]) =

∫
u∗ω > 0.

Monotonicity with τ > 0 then implies that the index is also positive. So, for practical
purposes, we define the (effective) minimal Maslov number NL ∈ N as the generator of
I({[u] ∈ π2(M,L)|A([u]) > 0}) ⊂ N. If M and L are exact (τ = 0), then no nonconstant
holomorphic disks can exist, so we have NL = ∞.

If the Lagrangian submanifold L is oriented then the index I(u) is always even. So the
orientation and monotonicity assumption on L imply NL ≥ 2. For most purposes4 we could
drop the orientation assumption and replace (L2) by

(L2’): L is compact and has minimal Maslov number NL ≥ 2.

4For nonoriented Lagrangians or Lagrangian correspondences all constructions and results in this paper
extend directly to the ungraded Floer cohomologies with Z2-coefficients. We do not discuss orientations of
moduli spaces in this case. The grading also directly extends if we drop the assumption (G2) of compatibility
with orientations.
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Now (L1) and (L2) or (L2’) imply that any nontrivial holomorphic disk must have I(u) ≥
2, which excludes disk bubbling in transverse moduli spaces of index 0 and 1. In order for
the Floer cohomology groups to be well defined we will also have to make the following
additional assumption.

(L3): L has minimal Maslov number NL ≥ 3.

Moreover, we will restrict our considerations to Maslov coverings and gradings that are
compatible with orientations, that is we make the following additional assumptions on the
grading of the symplectic manifolds M and Lagrangian submanifolds L ⊂M . (In the case
N = 2 these assumptions reduce to (L2).)

(G1): M is equipped with a Maslov covering LagN (M) for N even, and the induced 2-fold
Maslov covering Lag2(M) is the one described in Example 2.2.4 (i).

(G2): L is equipped with a grading σNL : L → LagN (M), and the induced 2-grading

L→ Lag2(M) is the one given by the orientation of L.

In the following we discuss topological situations which ensure monotonicity.

Lemma 3.1.1. Suppose that M is monotone and L ⊂M is a Lagrangian such that π1(L)
is torsion (that is, every element has finite order). Then L is monotone and the minimal
Maslov number is at least 2NM/k where k is the maximum of orders of elements of π1(L).

Proof. Let u : (D, ∂D) → (M,L) and let k(u) be the order of the restriction of u to
the boundary in π1(L). After passing to a k(u)-fold cover ũ, we may assume that the
restriction of ũ to ∂D is homotopically trivial in L. By adding the homotopy we obtain a
sphere v : S2 →M with

k(u)I(u) = I(ũ) = 2c1(v)

divisible by 2NM . For the relation between the first Chern class and the Maslov index see
e.g. [26, Appendix]. The similar identity for the actions (due to ω|L = 0) completes the
proof. �

Definition 3.1.2. We say that a tuple L = (Le)e∈E is monotone with monotonicity constant
τ ≥ 0 if the following holds: Let Σ be any connected compact surface with nonempty
boundary ∂Σ = te∈ECe (with Ce possibly empty or disconnected). Then for every map
u : Σ →M satisfying u(Ce) ⊂ Le we have the action-index relation

2

∫
u∗ω = τI(u∗TM, (u∗TLe)e∈E ),

where I is the sum of the Maslov indices of the totally real subbundles (u|Ce)
∗TLe in some

fixed trivialization of u∗TM .

In practice, we will need the action-index relation only for finitely many surfaces. For
example, the action-index relation for disks and annuli suffices to define Floer cohomology
for a pair of Lagrangians. The following is a minor generalization of [29, Proposition 2.7].

Lemma 3.1.3. If M is monotone, each Le ⊂M is monotone, and the image of each π1(Le)
in π1(M) is torsion, then the tuple (Le)e∈E is monotone.

Proof. Consider u : Σ →M satisfying u(Ce) ⊂ Le. By assumption we have integers Ne ∈ N

such that Neu|Ce is contractible in M . Let N =
∏
e∈E Ne, so that Nu|Ce is contractible for

all boundary components Ce of Σ. Let Σ̃ → Σ be a finiteN -cover defined by a representation
ρ : π1(Σ) → ZN with ρ([Ce]) = [N/Ne], so that each component of the inverse image C̃e
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of Ce is an Ne-fold cover. The pull-back ũ : Σ̃ → M of u : Σ → M has restrictions to the
boundary ũ|C̃e

that are homotopically trivial in M . Thus ũ is homotopic to the union of

some maps ve : (D, ∂D) → (M,Le) and a map v : S → M on a closed surface S. We can
now use the closedness of ω and the monotonicity of M and each Le to deduce

2N

∫
u∗ω = 2

∫
ũ∗ω = 2

∫
v∗ω +

∑

e∈E

2

∫
v∗eω

= 2τc1(v
∗TM) +

∑

e∈E

τI(ve) = τI(ũ) = τNI(u),

using properties of the Maslov index explained in [26, Appendix]. �

In the exact case, with ω = dλ, any tuple of exact Lagrangians (Le)e∈E , that is with
[λ|Le ] = 0 ∈ H1(Le), is automatically monotone. Moreover, note that monotonicity is
invariant under Hamiltonian isotopies of one or both Lagrangians.

Remark 3.1.4. Another situation in which one naturally has monotonicity is the Bohr-
Sommerfeld setting, as pointed out to us by P. Seidel. Suppose that the cohomology class [ω]
is integral. Let (L,∇) → (M,ω) be a unitary line-bundle-with-connection having curvature
(2π/i)ω. The restriction of (L,∇) to any Lagrangian L ⊂M is flat. L is Bohr-Sommerfeld if
the restriction of (L,∇) to L is trivial, that is, there exists a non-zero horizontal section φL

L.

The section φLL is unique up to a collection of phases U(1)π0(L). Suppose thatM is monotone,
[ω] = λc1(M) for some λ > 0. Since c1(M) and [ω] are integral, we must have λ = k/l for

some integers k, l > 0. Let K−1 →M denote the anticanonical bundle, K−1
m = Λtop

C
(T 0,1
m M),

which satisfies kc1(K−1) = l i2π [curv(∇)] = lc1(L). We fix an isomorphism

Φ : (K−1)⊗k → L⊗l

Let L ⊂ M be an oriented Lagrangian submanifold. The restriction of K−1 to L has a
natural non-vanishing section φK

L given by the orientation and the isomorphisms

Λtop
R
TL→ Λtop

C
T 0,1M |L, v1 ∧ . . . ∧ vn 7→ (v1 + iJv1) ∧ . . . ∧ (vn + iJvn).

We say that L is Bohr-Sommerfeld monotone with respect to (L,∇,Φ) if the sections (φL
L)⊗l

and Φ ◦ (φKL )⊗k are homotopic, that is, there exists a function ψ : L→ R such that

(16) (exp(2πiψ)φLL)⊗l = Φ ◦ (φKL)⊗k.

Lemma 3.1.5. Let L = (Le)e∈E be a collection of Lagrangians such that each is Bohr-
Sommerfeld monotone with respect to (L,∇,Φ). Then L is monotone.

Proof. Let Σ be a compact Riemann surface with boundary components (Ce)e∈E . Let
u : Σ → M be a map with boundary u(Ce) ⊂ Le. The index I(u) is the sum of Maslov
indices of the bundles (u|Ce)

∗TLe, with respect to some fixed trivialization of u∗TM . Equiv-
alently, I(u) is the sum of winding numbers of the sections φK

Le
with respect to the induced

trivialization of u∗K−1. Since each Le is Bohr-Sommerfeld, kI(u) is the sum of the winding
numbers of the sections (φLLe

)⊗l, with respect to the induced trivialization of u∗L⊗l. Write

u∗∇⊗l = d + α for some α ∈ Ω1(Σ) in this trivialization, so that u∗ curv(∇⊗l) = dα. Since
the sections are horizontal, we have

kI(u) = (i/2π)

∫

∂Σ
α = (i/2π)

∫

Σ
u∗ curv(∇⊗l) = lA(u).

�
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3.2. Graded Floer cohomology. Let L0, L1 ⊂M be compact Lagrangian submanifolds.
For a time-dependent Hamiltonian H ∈ C∞([0, 1] ×M) let (Xt)t∈[0,1] denote the family of
Hamiltonian vector fields for (Ht)t∈[0,1], and let φt0,t1 : M → M denote its flow. (That is,
φt0,t1(y) = x(t1), where x : [0, 1] → M satisfies ẋ = Xt(x), x(t0) = y.) We will abbreviate
φ1 := φ0,1 for the time 1 flow from t0 = 0 to t1 = 1. Let Ham(L0, L1) be the set of
H ∈ C∞([0, 1] ×M) such that φ1(L0) intersects L1 transversally. Then we have a finite set
of perturbed intersection points

I(L0, L1) :=
{
γ : [0, 1] →M

∣∣ γ(t) = φ0,t(γ(0)), γ(0) ∈ L0, γ(1) ∈ L1

}
.

It is isomorphic to the intersection φ1(L0) t L1. If we assume that M and L0, L1 are graded
as in (G1-2), then we obtain a degree map from Section 2.2,

I(L0, L1) → ZN , x 7→ |x| = d(σNL0
(x), σNL1

(x)).

Since N is even the sign (−1)|x| is well-defined. It agrees with the usual sign in the inter-
section number, given by the orientations of φ1(L0) and L1, which also determine the mod
2 grading by assumption.

Next, we denote the space of time-dependent ω-compatible almost complex structures by

Jt(M,ω) := C∞([0, 1],J (M,ω)).

For any J ∈ Jt(M,ω) and H ∈ Ham(L0, L1) we say that a map u : R × [0, 1] → M is
(J,H)-holomorphic with Lagrangian boundary conditions if

(17) ∂su(s, t) + Jt,u(s,t)(∂tu(s, t) −Xt(u(s, t))) = 0,

(18) u(R, 0) ⊂ L0, u(R, 1) ⊂ L1.

The (perturbed) energy of a solution is

EH(u) :=

∫

R×[0,1]
|∂su|2 =

∫

R×[0,1]
u∗ω + d(H(u)dt).

The following exponential decay lemma will be needed later and is part of the proof of
Theorem 3.2.2 below.

Lemma 3.2.1. Let H ∈ Ham(L0, L1) and J ∈ Jt(M,ω). Then for any (J,H)-holomorphic
strip u : R × [0, 1] → M with Lagrangian boundary conditions in L0, L1 the following are
equivalent:

(a) u has finite energy EH(u) =
∫

R×[0,1] |∂su|2 <∞;

(b) There exist x± ∈ I(L0, L1) such that u(s, ·) converges to x± exponentially in all
derivatives as s→ ±∞ .

For any x± ∈ I(L0, L1) we denote by

M(x−, x+) :=
{
u : R × [0, 1] →M

∣∣ (17), (18), EH(u) <∞, lim
s→±∞

u(s, ·) = x±
}
/R

the space of finite energy (J,H)-holomorphic maps modulo translation in s ∈ R. It is iso-
morphic to the moduli space of finite energy J ′-holomorphic maps with boundary conditions
in φ1(L0) and L1, and without Hamiltonian perturbation. Here J ′ ∈ Jt(M,ω) arises from
J by pullback with φt,1.

Suppose that the pair (L0, L1) is monotone, then for any x± ∈ I(L0, L1) there exists a
constant c(x−, x+) such that for all u ∈ M(x−, x+) the energy-index relation holds:

(19) 2EH(u) = τI(u) + c(x−, x+),
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where I(u) denotes the Maslov-Viterbo index of u (as in [4]). This monotonicity ensures
energy bounds for the moduli spaces and thus compactness up to bubbling.

Theorem 3.2.2. (Floer,Oh) Let L0, L1 ⊂ M be a monotone pair of Lagrangian subman-
ifolds satisfying (L1-2) and (M1-2). For any H ⊂ Ham(L0, L1), there exists a subset
J reg
t (L0, L1;H) ⊂ Jt(M,ω) of Baire second category, such that the following holds for all

x± ∈ I(L0, L1).

(a) M(x−, x+) is a smooth manifold whose dimension near a nonconstant solution u is
given by the formal dimension, equal to the Maslov-Viterbo index I(u) − 1.

(b) The component M(x−, x+)0 ⊂ M(x−, x+) of formal dimension zero is finite.
(c) Suppose that L0 and L1 have minimal Maslov numbers NLk

≥ 3. Then the one-
dimensional component M(x−, x+)1 ⊂ M(x−, x+) has a compactification as one-
dimensional manifold with boundary

(20) ∂M(x−, x+)1 ∼=
⋃

x∈I(L0,L1)

M(x−, x)0 ×M(x, x+)0

(d) If (L0, L1) is relatively spin (as defined in e.g. [46]), then there exists a coherent set
of orientations on M(x−, x+)0,M(x−, x+)1 for all x± ∈ I(L0, L1), that is, orienta-
tions compatible with (20).

For the proofs of (a-c) we refer to Oh’s paper [29] and the clarifications [30], [21]. For
the exact case see [37]. The proof of (d) is contained in [46] loosely following [7]. From (d)
we obtain a map

ε : M(x−, x+)0 → {±1}
defined by comparing the given orientation to the canonical orientation of a point.

Now let M be a monotone symplectic manifold satisfying (M1-2) and equipped with
an N -fold Maslov covering. Let L0, L1 ⊂ M be a monotone, relative spin pair of graded
Lagrangian submanifolds satisfying (L1-3), and let H ∈ Ham(L0, L1). The Floer cochain
group is the ZN -graded group

CF (L0, L1) =
⊕

d∈ZN

CF d(L0, L1), CF d(L0, L1) =
⊕

x∈I(L0,L1),|x|=d

Z〈x〉,

and the Floer coboundary operator is the map of degree 1,

∂d : CF d(L0, L1) → CF d+1(L0, L1),

defined by

∂d〈x−〉 :=
∑

x+∈I(L0,L1)

( ∑

u∈M(x−,x+)0

ε(u)
)
〈x+〉.

Here we choose some J ∈ J reg
t (L0, L1;H). If an isolated trajectory u ∈ M(x−, x+)0 exists,

then the degree identity |x+| = |x−| + 1 can be seen by concatenating the paths γ̃0, γ̃1 of
graded Lagrangians in the definition of |x−| with the unique graded lifts of u∗TL0, u

∗TL1

to obtain paths of graded Lagrangians defining |x+| (using a trivialization of u∗TM over
the strip, compactified to a disk). By additivity of the Maslov index this shows |x+| =
|x−| + I(u∗TL0, u

∗TL1) = |x−| + 1. It follows from Theorem 3.2.2 that ∂2 = 0. Now the
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Floer cohomology 5

HF (L0, L1) :=
⊕

d∈ZN

HF d(L0, L1), HF d(L0, L1) := ker(∂d)/im(∂d−1)

is ZN -graded. It is independent of the choice of H and J ; a generalization of this fact is
proved at the end of Section 4.3 below. If the gradings moreover satisfy (G1-2), then we
have a well defined splitting

HF (L0, L1) = HF even(L0, L1) ⊕HF odd(L0, L1).

Remark 3.2.3. In a suitable derived sense the Floer cohomology HF (L1, L0) for the switched
pair is the dual space Hom(HF (L0, L1),Z), see Remark 7.2.5 below.

3.3. Floer cohomology for sequences of Lagrangian correspondences. Let M,M ′

be monotone symplectic manifolds satisfying (M1-2) with the same monotonicity constant
τ ≥ 0, let both manifolds be equipped with an N -fold Maslov covering as in (G1), and fix
background classes b ∈ H2(M,Z2), b

′ ∈ H2(M ′,Z2). Let L be a generalized Lagrangian
correspondence from M to M ′ as in Definition 2.1.1, that is L = (L01, . . . , Lr(r+1)) is

a sequence of compact Lagrangian correspondences L(j−1)j ⊂ M−
j−1 ×Mj between a se-

quence M = M0,M1, . . . ,Mr+1 = M ′ of symplectic manifolds. We assume that L satisfies
(M1-2,L1-3), i.e. each Mj satisfies (M1-2) and each L(j−1)j satisfies (L1-3) with the fixed
monotonicity constant τ ≥ 0. We moreover assume that L is graded (see Definition 2.3.1)
and, similarly, that it is equipped with a relative spin structure in the following sense.

Definition 3.3.1. Let M,M ′ be symplectic manifolds and fix background classes b ∈
H2(M,Z2), b

′ ∈ H2(M ′,Z2). Let L be a generalized Lagrangian correspondence from M to
M ′. A relative spin structure on L is a collection of background classes bj ∈ H2(Mj ,Z2) and
relative spin structures on L(j−1)j with background classes −π∗

j−1bj−1 + π∗j bj. Here b0 = b

and br+1 = b′ are the fixed classes.

A pair of such generalized Lagrangian correspondences with relative spin structures, L1

and L2, from M to M ′ (with fixed background classes b, b′) defines a cyclic Lagrangian
correspondence L1#(L2)

T , which carries a relative spin structure in the following sense.

Definition 3.3.2. Let L = (L01, . . . , Lr(r+1)) be a cyclic generalized Lagrangian corre-

spondence (i.e. Lj(j+1) ⊂ M−
j × Mj+1 for a cyclic sequence M0,M1, . . . ,Mr+1 = M0 of

symplectic manifolds). A relative spin structure on L consists of a collection of background
classes bj ∈ H2(Mj ,Z2) for j = 0, . . . , r + 1 and relative spin structures on Lj(j+1) with
background classes −π∗

j bj + π∗j+1bj+1. The cyclic requirement on the background classes

b0 ∈ H2(M0,Z2) and br+1 ∈ H2(Mr+1,Z2) = H2(M0,Z2) is br+1 = b0 for r odd and
br+1 = b0 + w2(M0) for r even.6

For a pair L1, L2 of generalized Lagrangian correspondences from M to M ′, satisfying
the above assumptions, we will define a Floer cohomology

HF (L1, L2) := HF (L1#(L2)
T )

5Note that our conventions differ from Seidel’s definition of graded Floer cohomology in [38] in two points
which cancel each other: The roles of x− and x+ are interchanged and we switched the sign of the Maslov
index in the definition of the degree (9).

6This shift is necessary in order to fit in the canonical relative spin structure for the diagonal ∆0, see
Remark 6.6.5.
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by a more general construction for cyclic Lagrangian correspondences. So from now on we
consider a cyclic generalized Lagrangian correspondence L as in Definition 2.1.6, that is L =
(L01, . . . , Lr(r+1)) is a sequence of smooth Lagrangian correspondences L(j−1)j ⊂M−

j−1×Mj

between a sequence M0,M1, . . . ,Mr+1 = M0 of symplectic manifolds. We assume that L
satisfies (M1-2,L1-3), i.e. each Mj satisfies (M1-2) and each L(j−1)j satisfies (L1-3) with a
fixed monotonicity constant τ ≥ 0. We moreover assume that L is graded and equipped
with a relative spin structure. For example, we could consider a non-cyclic sequence of
symplectic manifolds M1, . . . ,Mr and Lagrangians L1 ⊂M1,

(
L(i−1)i ⊂M−

i−1 ×Mi

)
i=2,...,r

,

Lr ⊂M−
r , which is a special case of this setup with M0 = {pt}.

Eventually, in Section 4.3, we will define the Floer homology HF (L) directly, using
“quilts of pseudoholomorphic strips”. In this section however we define HF (L) as a special
case of the (monotone) Floer homology for pairs of Lagrangian submanifolds – which are
constructed from the sequence L as follows. If L has even length r + 1 ∈ 2N we define a
pair of graded Lagrangian submanifolds,

L(0) := (L01 × L23 × . . . × L(r−1)r)

L(1) := (L12 × L34 × . . . × Lr(r+1))
T ⊂ M−

0 ×M1 ×M−
2 × . . .×Mr =: M̃.

Here we denote by M−
1 × . . .×M−

r ×M0 →M−
0 ×M1× . . .×Mr, Z 7→ ZT the transposition

of the last to the first factor, combined with an overall sign change in the symplectic form.
If L has odd length r + 1 ∈ 2N + 1 we insert the diagonal ∆0 ⊂ M−

0 ×M0 = M−
r+1 ×M0

(equipped with its canonical grading) into L before arranging it into a pair of Lagrangian
submanifolds as above, yielding

L(0) = (L01 × L23 × . . .× Lr(r+1))

L(1) = (L12 × L34 × . . .× L(r−1)r × ∆0)
T ⊂ M−

0 ×M1 × . . .×M−
r ×Mr+1 = M̃

In the case of a noncyclic correspondence with M0 = Mr+1 = {pt} the transposition as well
as insertion of the diagonal are trivial operations. Note that, beyond the grading, also the
assumptions (L1-3) on L transfer directly to properties (L1-3) for L(0) and L(1).

7 Similarly,
a relative spin structure on L induces compatible relative spin structures on L(0) and L(1),
see [46]. Moreover, we say that L is monotone if the pair of Lagrangians (L(0), L(1)) is
monotone. If this is the case, then a graded Floer cohomology for L can be defined by

HF (L) := HF (L(0), L(1)).

In the case of a non-cyclic sequence this specializes to

HF (L1, L12, . . . , L(r−1)r, Lr) = HF (L1 × L23 × . . . , L12 × L34 × . . .).

Recall that the Floer complex CF (L(0), L(1)) is generated by the perturbed intersection

points I(L(0), L(1)) = φH(L(0)) ∩ L(1), where φH is the time-one flow of a Hamiltonian

H : [0, 1] × M̃ → R that makes this intersection transverse. In Section 4.3 we will wish to
use perturbation data of split type, that is given by a tuple of Hamiltonian functions

H =
(
Hj ∈ C∞([0, 1] ×Mj)

)
j=0,...,r

.

We identify this tuple with the Hamiltonian H =
∑r

j=0(−1)j+1Hj for r odd and with

H = −1
2H0 +

∑r
j=1(−1)j+1Hj + 1

2Hr+1 for r even, where Hr+1 := H0 ∈ C∞([0, 1] ×Mr+1).

7This would not necessarily be true if we had defined NL as the positive generator of I(π2(M,L)).
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The perturbed intersection points

I(L(0), L(1)) =
{
y : [0, 1] → M̃

∣∣ ẏ = XH(y), y(0) ∈ L(0), y(1) ∈ L(1)

}

are in canonical one-to-one correspondence 8 with the set of tuples of Hamiltonian chords,

I(L) :=

{
x =

(
xj : [0, 1] →Mj

)
j=0,...,r

∣∣∣∣∣
ẋj(t) = XHj (xj(t)),

(xj(1), xj+1(0)) ∈ Lj(j+1)

}
.

(Here and below we use the index j modulo r + 1, i.e. xr+1 := x0 resp. mr+1 := m0.)
Moreover, I(L) is canonically identified with ×φH0

(
L01 ×φH1 L12 . . . ×φHr Lr(r+1)

)
, the set

of points {
(m0, . . . ,mr) ∈M0 × . . .×Mr,

∣∣ (φHj (mj),mj+1) ∈ Lj(j+1)

}
,

where φHj is the time-one flow of the Hamiltonian Hj. In this setting we can check that
Hamiltonians of split type suffice to achieve transversality for the intersection points.

Proposition 3.3.3. There is a dense open subset Ham(L) ⊂ ⊕r
k=0C

∞([0, 1] ×Mk) such
that for every (H0, . . . ,Hr) ∈ Ham(L) the set ×φH0

(
L01×φH1 L12 . . .×φHr Lr(r+1)

)
is smooth

and finite, that is, the defining equations are transversal.

Proof. By assumption Lj(j+1) is an embedded submanifold of Mj(j+1) := M−
j ×Mj+1 and

so locally Lj(j+1) is the zero set of a submersion ψj(j+1) : Mj(j+1) → R
nj+nj+1 . The defining

equations for ×φH0

(
L01 ×φH1 L12 . . . ×φHr Lr(r+1)

)
are

(21) ψj(j+1)

(
φHj (mj),mj+1

)
= 0 for all j = 0, . . . , r.

Consider the universal moduli U space of data (H0, . . . ,Hr,m0, . . . ,mr) satisfying (21),
where now each Hj has class C` for some ` ≥ 2. The linearized equations for U are

(22) Dψj(j+1)(Dφ
Hj (hj , vj), vj+1) = 0 for all j = 0, . . . , r.

for vj ∈ TmjMj (with vr+1 := v0) and hj ∈ C`([0, 1] ×Mj). The map

C`([0, 1] ×Mj) → T
φHj (mj)

Mj, hj 7→ DφHj (hj , 0)

is surjective, which shows that the product of the operators on the left-hand side of (22)
is also surjective. By the implicit function theorem U is a smooth Banach manifold, and
we consider its projection to ⊕r

k=0C
`([0, 1] ×Mk). By the Sard-Smale theorem, the set of

regular values (the set of functions H = (H0, . . . ,Hr) such that the perturbed intersection
is transversal) is dense in ⊕r

k=0C
`([0, 1]×Mk). On the other hand, the set of regular values

is clearly open. Hence the set of smooth functions that are regular values is open and
dense. �

By this Proposition we can pick the Hamiltonian H in the definition of HF (L) of
split form given by a tuple (H0, . . . ,Hr) ∈ Ham(L). The (graded) Floer chain group
CF (L(0), L(1)) can then be identified with

CF (L) :=
⊕

d∈ZN

CF d(L), CF d(L) :=
⊕

x∈I(L),|x|=d

Z〈x〉.

8The correspondence is by y(t) =
`

x0(1 − t), x1(t), x2(1 − t), . . . , xr(t)
´

for r odd, and y(t) =
`

x0(1 −
1
2
t), x1(t), x2(1 − t) . . . , xr(1 − t), x0(

1
2
t)

´

for r even.
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The grading is defined as in Section 2.3,

I(L) ∼= I(L(0), L(1)) → ZN , x ∼= y 7→ |y| = |x|.
Next, the Floer differential is defined by counting finite energy (J,H)-holomorphic maps

v : R × [0, 1] → M̃ with boundary conditions v(R, 0) ⊂ L(0), v(R, 1) ⊂ L(1) and limits in

I(L(0), L(1)). If J ∈ J reg
t (L(0), L(1);H) is of split form, that is given by a tuple

J =
(
Jj ∈ C∞([0, 1],J (Mj , ωj)

)
j=0,...,r

,

then these moduli spaces are in one-to-one correspondence 9 with the moduli spaces of (r+1)-
tuples of finite energy (Jj ,Hj)-holomorphic maps uj : R× [0, 1] →Mj for j = 0, . . . , r (and
ur+1 := u0) with limits in I(L), satisfying the boundary conditions

(23) (uj(s, 1), uj+1(s, 0)) ∈ Lj(j+1), for all j = 0, . . . , r, s ∈ R.

Remark 3.3.4. To see that there exists a regular J ∈ J reg
t (L(0), L(1);H) of split form we fix

an almost complex structure of split form and note that the unique continuation theorem [5,
Theorem 4.3] applies to the interior of every single nonconstant strip uj : R × (0, 1) →Mj .
It implies that the set of regular points, (s0, t0) ∈ R × (0, 1) with ∂suj(s0, t0) 6= 0 and

u−1
j (uj(R ∪ {±∞}), t0) = {(s0, t0)}, is open and dense. These points can be used to prove

surjectivity of the linearized operator for a universal moduli space of solutions with respect
to split almost complex structures. (The constant solutions are automatically transverse
due to the previously ensured transversality of the intersection points φH(L(0)) t L(1).)
The existence of a regular, split J then follows from the usual Sard-Smale argument as in
[26].

We can thus define the differential ∂ on CF (L) by counting these (r + 1)-tuples of
holomorphic strips; see Figure 1 for r = 1 and r = 2. Then HF (L) is the cohomology of
(CF (L), ∂). We will use this for a further reformulation in terms of “quilts” in Section 4.3.

4. Quilted pseudoholomorphic surfaces

In this section we review the construction of relative invariants for surfaces with strip-like
(or cylindrical) ends analogous to [39, Section 2.4] (in the exact case) and [36] (in the case
of surfaces without boundary). We then introduce quilted pseudoholomorphic surfaces and
use these to construct new relative invariants associated to Lagrangian correspondences.
Finally, we express the Floer cohomology for sequences of Lagrangian correspondences in
terms of quilted surfaces.

4.1. Invariants for surfaces with strip-like ends. We begin with a formal definition
of surfaces with strip-like ends. To reduce notation somewhat we restrict to strip-like ends,
i.e. punctures on the boundary. One could in addition allow cylindrical ends by adding
punctures in the interior of the surface, see Remark 4.1.12.

Definition 4.1.1. A surface with strip-like ends consists of the following data:

9For r odd the correspondence is by v(s, t) =
`

u0(s, 1 − t), u1(s, t), u2(s, 1 − t), . . . , ur(s, t)
´

with J =
`

−J0(1 − t), J1(t),−J2(1 − t), . . . , Jr(t)
´

, and for r even it is by v(s, t) =
`

u0(
1
2
s, 1 − 1

2
t), u1(s, t), u2(s, 1 −

t) . . . , ur(s, 1 − t), u0(
1
2
s, 1

2
t)

´

with J(t) =
`

−J0(1 − 1
2
t), J1(t),−J2(1 − t), . . . ,−Jr(1 − t), J0(

1
2
t)

´

.
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(a) A Riemann surface S with boundary ∂S = C1 t . . .tCm and dn ≥ 0 distinct points
zn,1, . . . , zn,dn ∈ Cn in cyclic order on each boundary circle Cn ∼= S1. We will use
the indices on Cn modulo dn, index all marked points by

E = E(S) =
{
e = (n, l)

∣∣n ∈ {1, . . . ,m}, l ∈ {1, . . . , dn}
}
,

and use the notation e± 1 := (n, l± 1) for the cyclically adjacent index to e = (n, l).
For l = 1, . . . , dn we denote by Ie = In,l ⊂ Cn the component of ∂S between ze = zn,l
and ze+1 = zn,l+1.

(b) A complex structure jS on S := S \ {ze | e ∈ E}.
(c) A set of strip-like ends for S: A set of embeddings

εS,e : R
± × [0, 1] → S

such that lims→±∞(εS,e(s, t)) = ze and on each end, and ε∗S,ejS = j0 is the canonical

complex structure on R
±×[0, 1]. We denote the set of incoming ends εS,e : (−∞, 0)×

[0, 1] → S by E− = E−(S) and the set of outgoing ends εS,e : (0,∞) × [0, 1] → S by
E+ = E+(S).

(d) An ordering of the set of (compact) boundary components of S and an ordering of
the sets E± of incoming resp. outgoing ends,

E− = (e−1 , . . . , e
−
N−

), E+ = (e+1 , . . . , e
+
N+

),

where e±i = (n±i , l
±
i ) denotes the incoming or outgoing end at ze±i

.

Elliptic boundary value problems are associated to surfaces with strip-like ends as fol-
lows. Let E be a complex vector bundle over S and F = (Fe)e∈E(S) a tuple of totally
real subbundles over the boundary components Ie. Suppose that the sub-bundles Fe−1, Fe
intersect transversally at ze. Let

DE,F : Ω0(S,E;F ) → Ω0,1(S,E)

be a real Cauchy-Riemann operator acting on sections with boundary values in Fe over Ie.
Transversality at infinity implies that the operator DE,F is Fredholm. If S has no strip-like
ends, and S0 ⊂ S denotes the union of components without boundary, we denote by I(E,F )
the topological index

I(E,F ) = deg(E|S0) +
∑

e∈E(S)

I(Fe),

where I(Fe) is the Maslov index of the boundary data determined from a trivialization of
E|(S\S0) ∼= (S\S0) × C

r. The index theorem for surfaces with boundary [26, Appendix C]
implies (with χ(S) := χ(S))

(24) IndDE,F = rankC(E)χ(S) + I(E,F ).

A special case of these totally real boundary conditions will arise from Lagrangian subman-
ifolds. We fix a compact, monotone (or noncompact, exact) symplectic manifold (M,ω)
satisfying (M1-2) as in Section 3.1 and let M be equipped with an N -fold Maslov covering
satisfying (G1). For every boundary component Ie let Le ⊂ M be a compact, monotone,
graded Lagrangian submanifold satisfying (L1-2) and (G2). The grading |x| ∈ ZN on the

Floer chain groups then induces a Z2-grading (−1)|x| which only depends on the orientations
of L.

We say that the tuple L = (Le)e∈E(S) is relatively spin if all Lagrangians Le are relatively

spin with respect to one fixed background class b ∈ H 2(M,Z2), see [46] for more details.
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With these preparations we can construct moduli spaces of pseudoholomorphic maps
from the surface S. For each pair (Le−1, Le) choose a regular perturbation datum (He, Je)
as in section 2.2 such that the graded Floer cohomology HF (Le−1, Le) is well defined.
Let Ham(S;L) denote the set of C∞(M)-valued one-forms KS ∈ Ω1(S,C∞(M)) such that
KS |∂S = 0 and ε∗S,eKS = Hedt on each strip-like end. Let YS ∈ Ω1(S,Vect(M)) denote the
corresponding Hamiltonian vector field valued one-form, then ε∗S,eYS equals to XHedt on

each strip-like end. We denote by J (S;L) the subset of JS ∈ C∞(S,J (M,ω)) that equals
to the given perturbation datum Je on each strip-like end.

We denote by I−(L) the set of tuples x− = (x−e )e∈E− with x−e ∈ I(Le, Le−1) and by
I+(L) the set of tuples x+ = (x+

e )e∈E+ with x+
e ∈ I(Le−1, Le). For each of these tuples we

denote by
MS(x−, x+) :=

{
u : S →M

∣∣ (a) − (d)
}

the space of (JS ,KS)-holomorphic maps with Lagrangian boundary conditions, finite energy,
and fixed limits, that is

(a) JS(u) ◦ (du− YS(u)) = (du− YS(u)) ◦ jS ,
(b) u(Ie) ⊂ Le for all e ∈ E(S),
(c) EKS

(u) :=
∫
S

(
u∗ω + d(KS ◦ u)

)
<∞,

(d) lims→±∞ u(εS,e(s, t)) = x±e (t) for all e ∈ E±.

Remark 4.1.2. If the tuple of Lagrangians L is monotone in the sense of Definition 3.1.2,
then elements u ∈ MS(x−, x+) satisfy the energy-index relation

2EKS
(u) = τI(u∗TM, (u∗TLe)e∈E(S)) + c(x−, x+)

analogous to (19). This is seen by gluing u with a fixed element u0 to a map on the compact
doubled surface. Since KS |∂S = 0 this term drops out of the total energy.

Moreover, the index I(u∗TM, (u∗TLe)e∈E(S)) is determined mod 2 by the limit conditions

x−, x+. This is since different pullback bundles with fixed limits differ by a complex bundle
over closed components (with index 2c1) and by disks with boundary loops in TLe, which
have even index by (L2) resp. (L2’).

z1

z3

z4

z2

z0

u

L2

L1
L0

M

L4L3

x

y

p

q

r

Figure 2. A holomorphic curve u ∈ MS((x, y), (p, q, r)) for a surface S
with ends E− = {2, 0} and E+ = {4, 1, 3}

Theorem 4.1.3. Suppose that L = (Le)e∈E(S) is a monotone tuple of Lagrangian sub-
manifolds satisfying (L1-2) and (M1-2). For any HS ∈ Ham(S;L) there exists a subset
J reg(S;L;HS) ⊂ J (S;L) of Baire second category such that for any tuple (x− , x+) ∈
I−(L) × I+(L) the following holds.

(a) MS(x−, x+) is a smooth manifold.
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(b) The zero dimensional component MS(x−, x+)0 is finite.
(c) The one-dimensional component MS(x−, x+)1 has a compactification as a one-

manifold with boundary

∂MS(x−, x+)1 ∼=
⋃

e∈E−, y∈I(Le,Le−1)

M(x−e , y)0 ×MS(x−|x−e →y, x
+)0

∪
⋃

e∈E+, y∈I(Le−1,Le)

MS(x−, x+|x+
e →y)0 ×M(y, x+

e )0,

where the tuple x|xe→y is x with the intersection point xe replaced by y.
(d) If L is relatively spin then there exist a coherent set of orientations ε on the zero

and one-dimensional moduli spaces so that the inclusion of the boundary in (c) has

the signs (−1)
P

f<e |x
−
f | (for incoming trajectories) and −(−1)

P
f<e |x

+
f | (for outgoing

trajectories.)

The proof is similar to that of Theorem 3.2.2. In the moduli spaces of dimension 0 and
1 the bubbling of spheres and disks is ruled out by monotonicity and (L2) resp. (L2’). The
orientations are defined in [46]. We can thus define

CΦS :
⊗

e∈E−

CF (Le, Le−1) →
⊗

e∈E+

CF (Le−1, Le)

by

CΦS

(⊗

e∈E−

〈x−e 〉
)

:=
∑

x+∈I+(L)

( ∑

u∈MS(x−,x+)0

ε(u)
) ⊗

e∈E+

〈x+
e 〉.

By items (c),(d), the maps CΦS are chain maps and so descend to a map of Floer coho-
mologies

(25) ΦS :
⊗

e∈E−

HF (Le, Le−1) →
⊗

e∈E+

HF (Le−1, Le).

In order for the Floer cohomologies to be well defined, we have to assume in addition that
all Lagrangians in L satisfy (L3).

Remark 4.1.4. The standard Floer homotopy argument shows that the maps ΦS are in
fact relative invariants, that is independent of the choices of perturbation data (HS , JS)
and complex structure jS on S. The key fact is that any two choices (Hi, Ji, ji)i=0,1 (of
fixed form over the strip-like ends) can be connected by a homotopy (Hλ, Jλ, jλ)λ∈[0,1]. One
then considers the universal moduli spaces consisting of pairs (λ, u) of λ ∈ [0, 1] and a
solution u with respect to the data (Hλ, Jλ, jλ). For a generic homotopy, these are smooth
manifolds. Their 0-dimensional components can be oriented and counted to define a map
CΨ : ⊗E−CF → ⊗E+CF . The 1-dimensional component has boundaries corresponding to
the solutions contributing to CΦ0 and CΦ1 (the chain maps defined with respect to the
λ = 0 and λ = 1 data) and ends corresponding to pairs of solutions contributing to CΨ
and the boundary operators δ± in the Floer complexes for the ends. (Sphere and disk
bubbling is excluded by monotonicity.) Counting these with orientations proves CΦ0 −
CΦ1 = δ+ ◦ CΨ + CΨ ◦ δ−, i.e. CΨ defines a chain homotopy between CΦ0 and CΦ1,
and hence Φ0 = Φ1 on cohomology. See [36, Chapter 5.2] for the detailed construction
(including the isomorphism for different choices of perturbation data over the strip-like
ends), which directly generalizes from the closed case. The orientations are given by the
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orientation of the determinant line bundles constructed in [46] plus a (first) R-factor for the
[0, 1]-variable. The gluing of orientations is the same as in [46], and the signs for CΦi arise
from the boundary orientation of ∂[0, 1] = {0}− ∪ {1}.
Remark 4.1.5. Recall that M is equipped with an N -fold Maslov covering and each La-
grangian submanifold Le ⊂ M is graded. Suppose that S is connected. Then the effect of
the relative invariant ΦS on the grading is by a shift in degree of

|ΦS| =
1

2
dimM(#E+ − χ(S)) mod N.

That is, the coefficient of CΦS

(⊗
e∈E−

〈x−e 〉
)

in front of
⊗

e∈E+
〈x+
e 〉 is zero unless the degrees

|x−e | = d(σNLe
(x−e ), σNLe−1

(x−e )) and |x+
e | = d(σNLe−1

(x+
e ), σNLe

(x+
e )) satisfy

∑

e∈E+

|x+
e | −

∑

e∈E−

|x−e | = 1
2 dimM

(
#E+ − χ(S)

)
mod N.

Here #E+ is the number of outgoing ends of S. So, for example, ΦS preserves the degree if
S is a disk with one outgoing end and any number of incoming ends.

To check the degree identity fix paths Λ̃e : [0, 1] → LagN (TxeM) from σNLe−1
(xe) to σNLe

(xe)

for each end e ∈ E(S), and denote their projections by Λe : [0, 1] → TxeM . Let DTxeM,Λe be
the Cauchy-Riemann operator in TxeM on the disk with one incoming strip-like end and
with boundary conditions Λe. Then Lemma 2.2.7 gives

|x±e | = Ind(DTxeM,Λ±1
e

), e ∈ E±
with the reversed path Λ̃−1

e from σNLe
(x−e ) to σNLe−1

(x−e ) in case e ∈ E−. In this case we have

Ind(DTxeM,Λ−1
e

) + Ind(DTxeM,Λe) = 1
2 dimM mod N

since gluing the two disks gives rise to a Cauchy-Riemann operator on the disk with bound-
ary conditions given by the loop Λ−1

e #Λe, which lifts to a loop in LagN (TxeM) and hence
has Maslov index 0 mod N . Now consider an isolated solution u ∈ MS(x−, x+)0. For each
end e ∈ E(S) we can glue the operator DTxeM,Λ−1

e
on the disk to the linearized Cauchy-

Riemann operator Du∗TM,u∗TL on the surface S. This gives rise to a Cauchy-Riemann

operator on the compact surface S with boundary conditions given by loops of Lagrangian
subspaces (composed of u∗TLe and Λ−1

e ) that lift to loops in LagN (M) (composed of σLe ◦u
and (Λ̃e)

−1). In a trivialization of u∗TM their Maslov indices are hence divisible by N , and
so the index of the glued Cauchy-Riemann operator is

1
2 dimM · χ(S) = Ind(Du∗TM,u∗TL) +

∑

e∈E(S)

Ind(DTM,Λ−1
e

) mod N

= 0 +
∑

e∈E+(S)

(1
2 dimM − |x+

e |) +
∑

e∈E−(S)

|x−e | mod N.

Example 4.1.6. If S‖ is the strip R× [0, 1] (i.e. the disk with one incoming and one outgoing
puncture) then we can choose perturbation data that preserves the R-invariance of the
holomorphic curves. Then any nonconstant solution comes in a 1-dimensional family and
hence ΦS‖

is generated by the constant solutions. The same holds for the disks S∩ and S∪

with two incoming resp. two outgoing ends. With our choice of coherent orientations, see
[46], we obtain

Φ‖ := ΦS‖
= Id : HF (L0, L1) → HF (L0, L1),
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which is a map of degree 0. The disks S∩ and S∪ give rise to maps of degree − 1
2 dimM and

1
2 dimM respectively,

(26) Φ∩ := ΦS∩ : HF (L0, L1) ⊗HF (L1, L0) → Z,

(27) Φ∪ := ΦS∪ : Z → HF (L0, L1) ⊗HF (L1, L0).

We write 〈xi〉01 ∈ CF (L0, L1) resp. 〈xi〉10 ∈ CF (L1, L0) for the generators corresponding
to the intersection points I(L0, L1) ∼= I(L1, L0) = {xi | i = 1, . . . N}. Then, on the chain
level, the maps are given by CΦ‖ : 〈xi〉01 7→ 〈xi〉01 and

CΦ∩ : 〈xi〉01 ⊗ 〈xj〉10 7→ (−1)|〈xi〉01|εiδij , CΦ∪ : 1 7→
∑

i

εi〈xi〉01 ⊗ 〈xi〉10

for some signs ε1, . . . , εN ∈ {±1}.10 Here the degrees are related by |〈xi〉01| + |〈xi〉10| =
1
2 dimM as in Remark 4.1.5.

The relative invariants satisfy a tensor product law for disjoint union. A careful con-
struction of the orientations (see [46]) leads to the following convention.

Lemma 4.1.7. Let S1, S2 be surfaces with strip like ends and let S1 t S2 be the disjoint
union, with ordering of boundary components and incoming and outgoing ends induced by
the corresponding orderings on S1, S2. Then

ΦS1tS2 = ΦS1 ⊗ ΦS2 ,

where the graded tensor product is defined by

(28) (ΦS1 ⊗ ΦS2)(〈x1〉 ⊗ 〈x2〉) = (−1)|ΦS2
||x1|ΦS1(〈x1〉)ΦS2(〈x2〉).

The relative invariants satisfy a composition law for gluing along ends. Let S be a surface
with strip-like ends, M a symplectic manifold, and L Lagrangian boundary conditions as
in Section 4.1. Suppose that e+ = e+

i+
∈ E+(S) and e− = e−

i−
∈ E−(S) are outgoing resp.

incoming ends of S such that the Lagrangians agree, Le+−1 = Le− and Le+ = Le−−1. Then
we can algebraically define the trace of ΦS at (e−, e+)

Tre−,e+(ΦS) :
⊗

e∈E−(S)\{e−}

HF (Le, Le−1) →
⊗

e∈E+(S)\{e+}

HF (Le−1, Le)

by

Tre−,e+(ΦS) :=
(
IdE+\e+ ⊗ Φ

e+,e0
∩

)
◦
(
Ψe+ ⊗ Ide0

)
◦
(
ΦS ⊗ Ide0

)
(29)

◦
(
Ψe− ⊗ Ide0

)
◦
(
IdE−\e− ⊗ Φ

e−,e0
∪

)
,

where

(a) superscripts indicate the ends (and associated Floer cohomology groups) that the
maps act on,

(b) e0 is an additional end associated to the Floer cohomology group HF (Le−−1, Le−) =
HF (Le+, Le+−1),

10For a fixed ordered pair (L0, L1) one can refine the choice of coherent orientations such that the signs
in Φ∩ are εi = +1. For the reversed pair (L1, L0) this convention yields the same signs ε′i = +1 in Φ∩ if
1
2

dimM is odd, but they vary, ε′i = (−1)|〈xi〉10|, if 1
2

dimM even. (In the latter case the signs in Φ∪ are all

positive.)
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(c) Ψe± are the permutations of the factors in the graded tensor product needed to make
the compositions well-defined,

Ψe−i
:
( ⊗

e∈E−\{e−i }

〈xe〉
)

⊗ 〈xe−i 〉 7→ (−1)
|x

e−
i
|
PN−

j=i+1 |xe| ⊗

e∈E−

〈xe〉,

Ψe+i
:

⊗

e∈E+

〈xe〉 7→ (−1)
|x

e
+
i
|
PN+

j=i+1 |xe|
( ⊗

e∈E+\{e−i }

〈xe〉
)

⊗ 〈xe+i 〉.

Note that the trace does not depend on the choice of the signs εi in (26). On the other
hand, let #

e−
e+(S) denote the surface obtained by gluing together the ends e±, and choose an

ordering of the boundary components and strip-like ends. (There is no canonical choice for
this general gluing procedure.) The glued surface #

e−
e+(S) can be written as the “geometric

trace”
(
S
E+\e+
‖ t Se+,e0∩

)
#
(
SΨe+

t Se0‖
)
#
(
S t Se0‖

)
#
(
SΨe−

t Se0‖
)
#
(
S
E−\e−
‖ t Se−,e0∪

)
,

where S0#S1 denotes the gluing of all incoming ends of S0 to the outgoing ends of S1 (which
must be identical and in the same order). Here superscripts indicate the indexing of the ends

of the surfaces, so e.g S
E+\e+
‖ is a product of strips R×[0, 1] with both incoming and outgoing

ends indexed by E+ \ e+. The surfaces SΨe±
are the products of strips with incoming ends

indexed by (E− \ {e−}, e−) resp. E+ and outgoing ends indexed by E− resp. (E+ \ {e+}, e+)
(in the order indicated). The relative invariants associated to the surfaces in this geometric
trace are exactly the ones that we compose in the definition (29) of the algebraic trace. In
fact, the standard Floer gluing construction implies the following analogue of the gluing
formula [39, 2.30] in the exact case.

Id⊗Φ∩

Id⊗Φ∩

ΦS ⊗ Id

Ψe+ ⊗ Id

Ψe− ⊗ Id

Figure 3. Gluing example for a connected surface S

Theorem 4.1.8. Let S be a surface with strip-like ends and L Lagrangian boundary condi-
tions as in Theorem 4.1.3, satisfying in addition (L3) and (G1-2). Suppose that e± ∈ E±(S)
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such that Le+−1 = Le− and Le+ = Le−−1. Then

Φ
#

e−
e+

(S)
= (ε

S,#
e−
e+

(S)
)dim(M)/2 Tre−,e+(ΦS),

where ε
S,#

e−
e+

(S)
= ±1 is a universal sign depending on the surfaces, that is, the ordering of

boundary components etc.

Unfortunately it seems one cannot make the sign more precise, since there is no canonical
convention for ordering the boundary components etc. of the glued surface.

Sketch of Proof: By Remark 4.1.4, the relative invariant for the geometric trace can be
computed using a surface with long necks between the glued surfaces. Solutions (of both
the linear and non-linear equation) on this surface are in one-to-one correspondence with
pairs of solutions on the two separate surfaces; counting the latter exactly corresponds to
composition. The one-to-one correspondence is proven by an implicit function theorem
(using the fact that the linearized operator as well as its adjoint are surjective in the index
0 case) and a compactness result (using monotonicity to exclude bubbling). Details for the
analogous closed case can be found in [36, Chapter 5.4]. Universality of the gluing sign for
the case of simultaneous gluing of all ends is proved in [46]. By definition, our algebraic

trace is the composition of the relative invariants of S
E+\e+
‖

t Se+,e0∩ , SΨe+
t Se0

‖
, S t Se0

‖
,

SΨe−
t Se0‖ , and S

E−\e−
‖ t Se−,e0∪ , see Lemma 4.1.7. �

In [46] we determine more explicitly the gluing signs in two special cases: Gluing a
surface with one outgoing end to the first incoming end of another surface, and gluing the
ends of a surface with single incoming and outgoing ends (which lie on the same boundary
component).

Theorem 4.1.9. If S is a disjoint union S = S0 t S1 with ze− ∈ S0, ze+ ∈ S1, and if S1

has a single outgoing end E+(S1) = {e+}, we define canonical orderings as follows: Suppose
that e− is the last incoming end of S0 and the boundary components containing ze− resp.
ze+ are last in S0 resp. first in S1. Then we order the boundary components and ends of
the glued surface (S0)#

e−
e+(S1) := #

e−
e+(S0 t S1) by appending the additional boundaries and

incoming ends of S1 to the ordering for S0. With these conventions we have

Φ
(S0)#

e−
e+

(S1)
= ε · ΦS0 ◦ (1E−(S0)\e− ⊗ ΦS1),

where ε = 1 if n = 1
2 dimM is even or the number b1 of boundary components of S1 is odd,

and in general

ε = (−1)
n(b1+1)

P
e∈E−(S0)\{e−}(n−|xe|).

In our concrete situations the surfaces will always have one boundary component, b1 = 1,
and one outgoing end, hence the gluing sign will be ε = +1.

Theorem 4.1.10. If S is connected with exactly one incoming and one outgoing end E =
{e+, e−} lying on the same, first boundary component, we define canonical orderings as
follows: The glued surface #

e−
e+(S) has no further ends but two new compact boundary

components, which we order by taking the one labelled L1 first and that labelled L2 second,
where (L1, L2) denote the ordered boundary conditions at the outgoing end e+. (Then the
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ordered boundary conditions at e− are (L2, L1).) After these new components we order the
remaining boundary components in the order induced by S. With that convention we have

(30) Φ
#

e−
e+

(S)
: 1 7→ Tr(ΦS) =

∑

i

(−1)|xi|〈CΦS(〈xi〉), 〈xi〉〉,

the (graded) sum over the 〈xi〉 coefficients of CΦS(〈xi〉).
Example 4.1.11. We compute the invariants for closed surfaces as follows:

(a) (Disk) If S is the disk with boundary condition L, then ΦS is the number of isolated
perturbed J -holomorphic disks with boundary in L. Because of the monotonicity
assumption, and since we do not quotient out by automorphisms of the disk, each
component of the moduli space of such disks has at least the dimension of L, hence
ΦS = 0.

(b) (Annulus) Let A = #S‖ denote the annulus, obtained by gluing along the two ends
of the infinite strip S‖ = R × [0, 1] with boundary conditions L0 and L1. Let the
boundary components be ordered like (L0, L1), as in Theorem 4.1.10. Then the
gluing formula produces

ΦA = Tr(Id) = rankHF even(L0, L1) − rankHF odd(L0, L1).

The same result can be obtained by decomposing the annulus into cup and cap and
computing the universal sign to ΦA = Φ∩ ◦ Φ∪.

(c) (Sphere with holes) Let S denote the sphere with g+1 disks removed and boundary
condition L over each component. S can be obtained by gluing together g−1 copies
of the surface S0, which is obtained by removing a disk from the strip R × [0, 1];
see Figure 4. The latter defines an automorphism ΦS0 on HF (L,L), and the gluing
formulas give

ΦS = Tr(Φg−1
S0

) =
∑

(−1)|xi|〈Φg−1
S0

(〈xi〉), 〈xi〉〉.

Figure 4. Gluing copies of S0

Remark 4.1.12. One can also allow surfaces to have incoming or outgoing cylindrical ends
(with a periodic Hamiltonian perturbation). In this case the relative invariant acts on
the product of Floer cohomology groups with a number of copies of the cylindrical Floer
cohomology HF (Id), isomorphic to the quantum cohomology QH(M) of M . For instance,
a disk with one puncture in the interior gives rise to a canonical element φL ∈ HF (Id).
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Splitting the annulus into two half-cylinders glued at a cylindrical end gives rise to the
identity

rankHF even(L0, L1) − rankHF odd(L0, L1) = 〈φL0 , φL1〉HF (Id).

More generally, by considering a disk with one interior and one boundary puncture one
obtains the open-closed map HF (L,L) → HF (Id), see Remark 6.8.3.

4.2. Relative invariants for quilted surfaces. Quilted surfaces are obtained from a
collection of surfaces with strip-like ends by “sewing together” certain pairs of boundary
components. We give a formal definition below, again restricting to strip-like ends, i.e. punc-
tures on the boundary. One could in addition allow cylindrical ends by adding punctures
in the interior of the surface, see Remark 4.2.7.

Definition 4.2.1. A quilted surface S with strip-like ends consists of the following data:

(a) A collection S = (Sk)k=1,...,m of surfaces with strip-like ends as in Definition 4.1.1 (a)-
(c). In particular, each Sk carries a complex structures jk and has strip-like ends
(εk,e)e∈E(Sk) near marked points lims→±∞ εk,e(s, t) = zk,e ∈ ∂Sk.

(b) With the boundary components ∂Sk = (Ik,e)e∈E(Sk) in cyclic order on each compo-
nent, a collection S of pairwise disjoint 2-element subsets

σ ⊂
m⋃

k=1

{k} × E(Sk),

and for each σ = {(kσ , eσ), (k′σ , e′σ)} ∈ S, an identification of the corresponding
boundary components

ϕσ : Ikσ,eσ

∼→ Ik′σ,e′σ
Here either Ikσ ,eσ

∼= S1 ∼= Ik′σ,e′σ or ϕσ is compatible with the strip-like ends. The
latter means that the two ends eσ and e′σ − 1 are either both incoming and we have
ϕσ(εkσ ,eσ(s, 0)) = εk′σ ,e′σ−1(s, 1), or they are both outgoing and ϕσ(εkσ,eσ(s, 1)) =
εk′σ,e′σ−1(s, 0). Similarly, the ends eσ − 1 and e′σ are either both incoming and
ϕσ(εkσ ,eσ−1(s, 1)) = εk′σ,e′σ(s, 0), or they are both outgoing and ϕσ(εkσ,eσ−1(s, 0)) =
εk′σ,e′σ(s, 1).

(c) Orderings of the boundary components of each Sk as in Definition 4.1.1 (d). There
are no orderings of ends of components but orderings E−(S) = (e−1 , . . . , e

−
N−(S))

and E+(S) = (e+1 , . . . , e
+
N−(S)) of the incoming and outgoing ends of S. Here each

end e ∈ E(S) = E−(S) t E+(S) of the quilt consists of a maximal sequence of
ends e = (ki, ei)i=1,...,ne with boundaries εki,ei

(·, 1) ∼= εki+1,ei+1
(·, 0) identified via

some seam φσi . (The sequence could be cyclic, i.e. with an additional identification
εkn,en(·, 1) ∼= εk1,e1(·, 0) via some seam φσn .) These ends are either all incoming, and
hence ei ∈ E−(Ski

), or they are all outgoing, and hence ei ∈ E+(Ski
).

We call σ ∈ S the seams of S. The remaining ”true boundary components” of S are
indexed by

B :=

m⋃

k=1

{k} × E(Sk) \
⋃

σ∈S

σ.

This is the set of ends (k, e) whose corresponding boundary component Ik,e is not identified
with another boundary component of S. A picture of a quilt is shown in Figure 5. Ends
at the top resp. bottom of a picture will always be outgoing resp. incoming ends. The
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alternative picture is that in which the ends converge to a point and we indicate by arrows
whether the ends are outgoing or incoming. Here we draw the quilted surface as the interior
of a circle (in general this could be a more general surface), although this is somewhat
misleading as the outer edges of the circle consist of boundary components of different
surfaces. In this example the end sequences are (2, 0), (1, 0) and (2, 1) for the incoming ends
(at the bottom), and (2, 2), (3, 0), (2, 3), (1, 1) for the outgoing end (at the top). (Our only
choice here is which marked point on the boundary circles of Si to label by 0.)

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���
���
���
���
���
���

���
���
���
���
���
���

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�
�
�
�
�


�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

S1

S2

S3

S1

S2

S3

Figure 5. Two views of a quilted surface

Elliptic boundary value problems are associated to quilted surfaces with strip-like ends
as follows. Suppose that E = (Ek)k=1,...,m is a collection of complex vector bundles over
the components of S, and F is a collection of totally real sub-bundles

F =
(
F(kσ ,eσ),(k′σ ,e

′
σ) ⊂ E−

kσ
×Ek′σ

)
σ∈S

∪
(
F(k,e)

)
(k,e)∈B

.

Here we write E− as short hand for the complex vector bundle with reversed complex struc-
ture, (E, J)− = (E,−J). Suppose, furthermore, that the totally real boundary conditions
are transverse along each end. Let

Ω0(S,E;F ) ⊂
⊕

Ω0(Sk, Ek)

denote the subspace of collections of sections uk ∈ Γ(Ek) such that (ukσ , uk′σ) maps I(kσ,eσ)
∼=

I(k′σ ,e′σ) to F(kσ ,eσ),(k′σ ,e
′
σ) for every σ ∈ S and uk maps I(k,e) to F(k,e) for every (k, e) ∈ B.

The direct sum of Cauchy-Riemann operators

DE,F : Ω0(S,E;F ) → Ω0,1(S,E) :=
⊕

Ω0,1(Sk, Ek)

maps to the direct sum of (0, 1)-forms on the components, and we denote by Ind(E,F ) its
index. In the case that S has no strip-like ends, we define a topological index I(E,F ) as
follows. For each component Sk with boundary we choose a complex trivialization of the
bundle Ek ∼= Sk × C

rk . Each bundle

F(k,e) ⊂ Ek|I(k,e)
∼= Ik,e × C

rk

has a Maslov index I(F(k,e)) depending on the trivialization of Ek. Similarly,

F(kσ ,eσ),(k′σ,e
′
σ) ⊂ E−

kσ
|I(kσ,eσ)

× ϕ∗
(kσ ,eσ),(k′σ ,e

′
σ)Ek′σ |I(k′σ,e′σ)

∼= Ikσ,eσ × (Crkσ )− ⊗ C
rk′σ
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has a Maslov index I(F(kσ ,eσ),(k′σ ,e
′
σ)) depending on the trivializations of Ekσ and Ek′σ . Let

S0 ⊂ S be the union of components without boundary and define

I(E,F ) := deg(E|S0) +
∑

σ∈S

I(F(kσ ,eσ),(k′σ ,e
′
σ)) +

∑

(k,e)∈B

I(F(k,e)),

where the second sum is over seams and third sum over boundaries of S. We leave it
to the reader to check that the sum is independent of the choice of trivializations. Both
the topological and analytic index are invariant under deformation, and by deforming the
boundary conditions to those of split form one obtains from (24) an index formula

Ind(DE,F ) =
∑

i

rankC(Ei)χ(Si) + I(E,F ).

We now construct moduli spaces of pseudoholomorphic quilted surfaces. Let

M =
(
(Mk, ωk)

)
k=1,...,m

be a collection of symplectic manifolds. A Lagrangian boundary condition for (S,M ) is a
collection

L =
(
L(kσ ,eσ),(k′σ ,e

′
σ) ⊂M−

kσ
×Mk′σ

)
σ∈S

∪
(
L(k,e) ⊂Mk

)
(k,e)∈B

of Lagrangian correspondences and Lagrangian submanifolds associated to the seams and
boundary components of the quilted surface. We will indicate the domains Mk, the “seam
conditions” L(kσ ,eσ),(k′σ ,e

′
σ), and the true boundary conditions L(k,e) by marking the surfaces,

seams and boundaries of the quilted surfaces as in figure 6.
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Figure 6. Lagrangian boundary conditions for a quilt

We say that the tuples M and L are graded if each Mk is equipped with an N -fold
Maslov covering for a fixed N ∈ N and each Lagrangian L(kσ,eσ),(k′σ ,e

′
σ) ⊂ Mkσ ×Mk′σ and

L(k,e) ⊂Mk is graded with respect to the respective Maslov covering. Moreover, we assume
that the gradings are compatible with orientations in the sense of (G1-2).

We say that L is relatively spin if all Lagrangians in the tuple are relatively spin with
respect to one fixed set of background classes bk ∈ H2(Mk,Z2), see [46].

Definition 4.2.2. We say that the Lagrangian boundary condition L for S is monotone if
the sequences Le in (31) are monotone in the sense of Section 3.3 for each end e ∈ E(S) and

the following holds: Let S−#S denote the quilted surface obtained by gluing a copy S− of S
with reversed complex structure (and hence reversed ends) to S at all corresponding ends.
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This quilted surface has components (S−
k #Sk)k=1,...,m, seams (C(kσ ,eσ),(k′σ ,e

′
σ)

∼= S1)σ∈S ,

and boundary components (Ck,e ∼= S1)(k,e)∈B, but no strip-like ends. Then for each tuple

of maps u : S−#S → M (that is uk : S−
k #Sk → Mk) that takes values in L over the

seams and boundary components (that is (ukσ × uk′σ)(C(kσ ,eσ),(k′σ,e
′
σ)) ⊂ L(kσ ,eσ),(k′σ ,e

′
σ) and

uk(Ck,e) ⊂ L(k,e)) we have the action-index relation

2
m∑

k=1

∫
u∗kωk = τI(Eu, F u)

for Eu = (u∗kTMk)k=1,...,m and

F u =
(
(ukσ × uk′σ)∗TL(kσ ,eσ),(k′σ,e

′
σ)

)
σ∈S

∪ (u∗kTL(k,e))(k,e)∈B.

Note the following analogue of Lemma 3.1.3: If each Mk is monotone in the sense of
(M1) and each L(kσ ,eσ),(k′σ ,e

′
σ) and L(k,e) is monotone in the sense of (L1), all with the same

constant τ ≥ 0, and each π1(L(kσ ,eσ),(k′σ,e
′
σ)) → π1(M

−
kσ

×Mk′σ) and π1(L(k,e)) → π1(Mk)
has torsion image, then L is monotone.

For every end e± = ((ki, ei))i=1,...,ne ∈ E±(S) we will consider the following sequence of
Lagrangian correspondences:

Le− := (L(k1,e1), L(k1,e1−1)(k2,e2), . . . , L(kn−1 ,en−1−1)(kn,en), L(kn,en−1)),(31)

Le+ := (L(k1,e1−1), L(k1,e1)(k2,e2−1), . . . , L(kn−1,en−1)(kn,en−1), L(kn,en)),

with n = ne± . (If the end is cyclic, then the corresponding sequence is cyclic - with the

first and last entry above replaced by L(kn,en−1)(k1,e1) resp. L(kn,en)(k1,e1−1).) We can fix
a perturbation datum (Hki,ei

)i=1,...,ne and (Jki,ei
)i=1,...,ne for each end e ∈ E(S) such that

the Floer homology HF (Le) is well defined. (By Section 3.3 these can be chosen of split
form.) In particular, the intersection of the Lagrangian sequence I(Le) is finite for each

end e ∈ E(S), by Proposition 3.3.3. For e ∈ E−(S) (and similarly for e ∈ E+(S) and in the
cyclic case) this intersection corresponds bijectively to

Lk1,e1 ×φ1 L(k1,e1−1)(k2 ,e2) ×φ2 . . . L(kn−1,en−1−1)(kn,en) ×φn L(kn,en−1) ⊂
n∏

i=1

Mki
.

Here φi denotes the time 1 flow of the Hamiltonian Hki,ei
on Mki

. Next, let Ham(S,L)
denote the set of tuples

K =
(
Kk ∈ Ω1(Sk, C

∞(Mk))
)
k=1,...,m

such that Kk|∂Sk
= 0 and on each end ε∗k,eKk = Hk,edt. We denote the corresponding

Hamiltonian vector field valued one-forms by Y ∈ Ω1(S,Vect(M )). These satisfy ε∗k,eYk =

XHk,e
dt on each strip-like end. Next, let J (S,L) denote the set of collections

J =
(
Jk ∈ Map(Sk,J (Mk, ωk))

)
k=1,...,m

agreeing with the chosen almost complex structures on the ends. Now we denote by I−(S,L)
resp. I+(S,L) the set of tuples X± = (x±e )e∈E±(S) consisting of one intersection tuple x±e =

(x±ki,ei
)i=1,...,ne ∈ I(Le) for each incoming resp. outgoing end e. For each pair (X−, X+) ∈

I−(S,L) × I+(S,L) we denote by

MS(X−, X+) :=
{
u =

(
uk : Sk →Mk

)
k=1,...,m

∣∣ (a) − (d)
}
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the space of collections of (J,K)-holomorphic maps with Lagrangian boundary and seam
conditions, finite energy, and fixed limits, that is

(a) Jk(uk) ◦ (duk − Yk(uk)) = (duk − Yk(uk)) ◦ jk for k = 1, . . . ,m,
(b) (ukσ , uk′σ ◦ ϕσ)(Ikσ ,eσ) ⊂ L(kσ,eσ),(k′σ ,e

′
σ) for all σ ∈ S and uk(Ik,e) ⊂ L(k,e) for all

(k, e) ∈ B.
(c) EK(u) =

∑m
k=1EKk

(uk) <∞,

(d) lims→±∞ uki
(εki,ei

(s, t)) = x±ki,ei
(t) for all e = (ki, ei)i=1,...,ne ∈ E±(S).

Remark 4.2.3. If L is monotone, then elements u ∈ MS(X−, X+) satisfy an energy-index
relation

2EK(u) = τI(u∗TM, u∗TL) + c(X−, X+)

as in Remark 4.1.2. Moreover, the index I(u∗TM, u∗TL) is determined mod 2 by the limit
conditions X−, X+, due to the same discussion as before on each component of the quilted
surface.

Theorem 4.2.4. Suppose that each Mk satisfies (M1-2), L is monotone, and each La-
grangian in L satisfies (L1-2). For any K ∈ Ham(S,L) there exists a subset J (S,L,K)reg ⊂
J (S,L) of Baire second category such that for all X± ∈ I±(S,L)

(a) MS(X−, X+) is a smooth manifold;
(b) The zero dimensional component MS(X−, X+)0 is finite;
(c) The one-dimensional component MS(X−, X+)1 has a compactification as a one-

manifold with boundary

∂MS(X−, X+)1 ∼=
⋃

e∈E−,y∈I(Le)

M(x−e , y)0 ×MS(X−|x−e →y, X
+)0

∪
⋃

e∈E+,y∈I(Le)

MS(X−, X+|x+
e →y)0 ×M(y, x+

e )0,

where the multi-tuple X|xe→y is X with the tuple xe replaced by y.

(d) If L is relatively spin, then there exists a coherent set of orientations on the zero
and one-dimensional moduli spaces so that the inclusion of the boundary in (c) has

the signs (−1)
P

f<e |x−f |
(for incoming trajectories) and −(−1)

P
f<e |x+

f |
(for outgoing

trajectories.)

Sketch of Proof: The first remark is that the elliptic estimates, used in the Fredholm theory
and for the compactness, are locally constructed. Near any seam in the quilted surface
we may treat a J -holomorphic map of the quilted surface as a J -holomorphic map of the
half-plane with Lagrangian boundary conditions. Similarly, in the proof of compactness,
the development of sphere or disk bubbles is an entirely local phenomenon and so ruled
out, for the zero and one-dimensional moduli spaces, by the energy-index relation and the
assumptions (L1-2) which imply that all Lagrangians in L have minimal Maslov number at
least 2. Exponential decay holds on the ends since these are simple strip-like ends (with
values in a product of manifolds) as in Lemma 3.2.1. To achieve transversality we can, as in
Remark 3.3.4, work with split almost complex structures on each surface of the quilt. The
gluing construction, which shows the reverse inclusion in (c), is local near each end in the
sense that it uses only the non-degeneracy of operator on the neck and the regularity of the
linearized operators for the Floer trajectories, which hold by the choice of the perturbation
data. The orientations are defined, and coherence is proven in [46]. �
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Associated to the data (S,M,L) as in Theorem 4.2.4 we construct a relative invariant
ΦS as follows. Define

CΦS :
⊗

e∈E−(S)

CF (Le) →
⊗

e∈E+(S)

CF (Le)

by

CΦS

(⊗

e∈E−

〈x−e 〉
)

:=
∑

X+∈I+(S,L)

( ∑

u∈MS(X−,X+)0

ε(u)

) ⊗

e∈E+

〈x+
e 〉,

where

ε : MS(X−, X+)0 → {−1,+1}
is defined by comparing the orientation given by Theorem 4.2.4 (d) to the canonical orien-
tation of a point. By items (c),(d) of Theorem 4.2.4, the maps CΦS are chain maps and so
descend to a map of Floer cohomologies

(32) ΦS :
⊗

e∈E−(S)

HF (Le) →
⊗

e∈E+(S)

HF (Le).

Here we assume in addition that all Lagrangians in L satisfy (L3) and hence the Floer
cohomologies are well defined.

Floer’s argument using parametrized moduli spaces (as sketched in Remark 4.1.4) carries
over to this case to show that ΦS is independent of the choice of perturbation data, complex
structures jk on Sk, and the strip-like ends.

Remark 4.2.5. The effect of the relative invariant ΦS on the grading is by a shift in degree
of

(33) |ΦS | =

m∑

k=1

1
2 dimMk

(
#E+(Sk) − χ(Sk)

)
mod N.

To check this we consider an isolated solution u ∈ MS(X−, X+)0. We can deform the lin-
earized seam conditions on the ends, Tx±e Le for e ∈ E±(S), to split type, (Λ(k1,e1),Λ(k1,e1−1)×
Λ(k2,e2), . . . ,Λ(kn−1 ,en−1−1) × Λ(kn,en),Λ(kn,en−1)) for e ∈ E−(S) resp. (Λ(k1,e1−1),Λ(k1,e1) ×
Λ(k2,e2−1), . . . ,Λ(kn−1 ,en−1) ×Λ(kn,en−1),Λ(kn,en)) for e ∈ E+(S), without changing the index.
(This is possible since the space of Lagrangian subspaces transverse to a given one is always
connected.) Note here that the indexing Λ(k,e) is simplified since the boundary component
Ie of the surface Sk occurs in two – not necessarily different – ends, but with a different
linearized boundary condition Λ(k,e). The point is that Lemma 2.3.5 expresses the degree
of each end as a sum,

|x−e | =

n∑

i=1

d(Λ̃(ki,ei), Λ̃(ki,ei−1)), |x+
e | =

n∑

i=1

d(Λ̃(ki,ei−1), Λ̃(ki ,ei)),

and summing this over all incoming resp. outgoing ends of S is the same as summing over
all incoming resp. outgoing ends of all surfaces Sk, k = 1, . . . ,m. Next, we deform the
linearized boundary conditions with fixed ends to split type over each seam. Again, this
does not affect the index and thus results in a splitting of the index 0 =

∑m
k=1 Ind(DEk,Fk

)
into the indices of Cauchy-Riemann operators on Ek = u∗kTMk with boundary conditions
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in the totally real subbundles Fk ⊂ Ek|∂Sk
that are constant equal to some Λ(k,·) on the

strip-like ends. From Remark 4.1.5 we have a mod N degree index identity for each surface,

1
2χ(Sk) dimMk = Ind(DEk,Fk

) +
∑

e∈E+(Sk)

(
1
2 dimMk − d(Λ̃0

e , Λ̃
1
e)
)

+
∑

e∈E−(Sk)

d(Λ̃0
e, Λ̃

1
e),

where the degree d(Λ̃0
e, Λ̃

1
e) for each end equals to d(Λ̃(k,e−1), Λ̃(k,e)) resp. d(Λ̃(k,e), Λ̃(k,e−1))

for e ∈ E+(Sk) resp. e ∈ E−(Sk). So, summing over all surfaces Sk we obtain as claimed

m∑

k=1

1
2 dimMk

(
χ(Sk) − #E+(Sk)

)
= −

∑

e∈E+(S)

|x+
e | +

∑

e∈E−(S)

|x−e | mod N.

Remark 4.2.6. When working with Z coefficients, then changing the ordering of the patches
(and hence their boundary components) in S changes the relative invariant ΦS by a universal
sign. These signs are only affected by the ordering of patches Sk whose deficiency #E+(Sk)−
b(Sk) is odd. Here b(Sk) denotes the number of boundary components of Sk. We will
not mention ordering for patches of even deficiency, e.g. for patches with one boundary
component and one outgoing end.

Remark 4.2.7. As in Remark 4.1.12, one can also allow the component surfaces to have
incoming and outgoing cylindrical ends. In this case, the relative invariants (32) have
additional factors of cylindrical Floer homologies HF (IdMk

) on either side.

The gluing theorem 4.1.8 generalize to the quilted case as follows. Let S be a quilted
surface, M a collection of monotone symplectic manifolds associated to the components of
S, and L Lagrangian boundary conditions for S as in Theorem 4.2.4, satisfying in addition
(L3) and (G1-2). Associated to S we may form an unquilted surface with strip-like ends
S′, by “cutting along the seams”. Let L′ be a collection of boundary conditions for the
corresponding collection of symplectic manifolds M ′.

Theorem 4.2.8. Suppose that e± = (k±i , e
±
i )i=1,...,N ∈ E±(S) are ends with ne− = ne+ = N

and such that the data Mk−i ,e
−
i

= Mk+
i ,e

+
i

and Le− = Le+ coincide. Then we have

(34) Φ
#

e−
e+

(S)
= ε

S,#
e−
e+

(S),M
Tre−,e+(ΦS),

where #
e−
e+(S) is the quilted surface obtained by gluing the ends in e− to the corresponding

ends in e+. The algebraic trace Tre−,e+ is defined by the formula (29) but using the quilted

cup and cap (a union of strips with Lagrangian boundary and seam conditions given by
Le± as in Figure 7, but with two outgoing resp. incoming ends) to define Φ∪,Φ∩. The sign

ε
S,#

e−
e+

(S),M
is the gluing sign in Theorem 4.1.8 for the unquilted surface S ′; it depends on

the orderings of the boundary components and the dimensions of the entries of M .

Unfortunately, the explicit gluing sign is too complicated to write down even in the special
case of a disjoint union S = S0 t S1 of quilted surfaces.

4.3. Quilted Floer cohomology. In the following we reformulate the definition of Floer
cohomology for sequences of Lagrangian correspondences in terms of quilted surfaces. As in
Section 3.3 consider a cyclic generalized Lagrangian correspondence L, that is, a sequence
of symplectic manifolds

M0,M1, . . . ,Mr,Mr+1 such that M0 = Mr+1
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for r ≥ 0, and a sequence of Lagrangian correspondences

L01 ⊂M−
0 ×M1, L12 ⊂M−

1 ×M2, . . . , Lr(r+1) ⊂M−
r ×Mr+1.

Suppose that these satisfy (M1-2) with the same value of the monotonicity constant τ ,
(L1-3), and the monotonicity assumption11 for the pair (L(0), L(1)), as in Definition 3.1.2.
Proposition 3.3.3 provides a tuple of Hamiltonians H = (Hk : Mk → R)k=0...,r ∈ Ham(L)
such that the intersection points

I(L) =

{
x =

(
xk : [0, 1] →Mk

)
k=0,...,r

∣∣∣∣∣
ẋk(t) = XHk

(xk(t)),

(xk(1), xk+1(0)) ∈ Lk(k+1)

}

(with xr+1 := x0) are nondegenerate and hence finite. The Floer chain group is

CF (L) :=
⊕

x∈I(L)

Z〈x〉.

As seen in Remark 3.3.4 there exists a regular tuple (Jk ∈ Jt(Mk, ωk))k=0,...,r of almost
complex structures such that the Floer differential can be defined by counting tuples of finite
energy (Jk,Hk)-holomorphic maps (uk : R × [0, 1] → Mk)k=0,...,r with limits corresponding
to x± ∈ I(L) and boundary conditions (uk(s, 1), uk+1(s, 0)) ∈ Lk(k+1) (where ur+1 := u0).
These exactly correspond to the quilted Floer trajectories

u ∈ MZ(x−, x+) with K = (Hkdt)k=0,...,r, J = (Jk)k=0,...,r.

Here the quilted surface is the quilted cylinder Z = (Sk = R× [0, 1])k=0,...,r as indicated on
the right in Figure 7, with the canonical ends εk,e+(s, t) = (s, 1 + t) and εk,e−(s, t) =
(−s,−1 − t), seams σk = {(k, e+), (k + 1, e−)} for k = 0, . . . , r modulo (r + 1), ends
e− =

(
(0, e−), (1, e−), . . . , (r, e−)

)
, e+ =

(
(0, e+), (1, e+), . . . , (r, e+)

)
, and no remaining

boundary components. On the left in Figure 7 we indicated the special case of a noncyclic
sequence of Lagrangian correspondences with M0 = {pt}.

L(r−1)r

Lr

L0

...

L12

L12

L01

Lr(r+1)

L(r−1)r

...

Lt23

Lt(r−2)(r−1)

Figure 7. Quilted Floer trajectories for M0 = {pt} and in general

Note however that the perturbation data (J,K) is R-invariant and the count for the
Floer differential is modulo simultaneous R-shift of all uk. Hence we have for all x− ∈ I(L)

∂〈x−〉 =
∑

x+∈I(L)

( ∑

u∈MZ(x−,x+)1/R

ε(u)
)
〈x+〉,

11The monotonicity assumption can be phrased directly for L (without reference to the pair L(0), L(1)),
as in Definition 4.2.2: L is a monotone boundary condition for the quilted cylinder Z defined below. This
amounts to the action-index relation 2

Pr
k=0

R

u∗
kωk = τI((u∗

kTMk), s∗k(k+1)TLk(k+1)) for each tuple of maps

uk : R × S1 →Mk with seam conditions sk(k+1)(s) := (uk(s, 1), uk+1(s, 0)) ∈ Lk(k+1).
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where the sign ε(u) = ±1 is given by comparing the orientation on MZ(x−, x+)1 with the
canonical orientation induced by the R-action. By the identification with the construction
in Section 3.3 we know that ∂ ◦ ∂ = 0 and HF (L) := ker ∂/ im ∂ ∼= HF (L(0), L(1)) is
independent up to isomorphism of the choice of perturbation data (H,J).

In the quilted setup for HF (L) we can introduce further auxiliary choices by using strips
Sk = R× [0, δk] of width δ = (δk > 0)k=0,...,r in the quilted cylinder Zδ. This is equivalent to

changing the complex structure jk on each Sk = R×[0, 1] such that the (Jk,Hk)-holomorphic
equation for uk : R × [0, 1] →Mk becomes

∂suk(s, t) + δ−1
k Jk(t, uk(s, t))

(
∂tuk(s, t) −XHk,t(uk(s, t))

)
= 0.

By a global rescaling we could fix one width δ0 = 1 but not all of them due to the iden-
tification of the surfaces at the seams. In other words, the maps uk cannot be rescaled
independently since they are related by possibly non-split Lagrangian correspondences on
the seams.

Proposition 4.3.1. HF (L) is independent, up to isomorphism of ZN -graded groups, of
the choice of perturbation data (H,J) and widths δ of the strips in Z = Z δ.

Proof. Suppose that (H i, J i, δi) are two different choices for i = 0, 1. For {i, l} = {0, 1} let
Zil be the quilted cylinder as before, but with complex structures jk on each Sk ∼= R× [0, 1]
that interpolate between the two widths δik at the end (k, e−) and δlk at the end (k, e+).
Figure 8 shows the example for r = 3 and M0 = M4 = {pt}. We moreover interpolate the
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δ03

δ02

δ01

δ13

δ12
δ11

L2

L12

L01

L0

Figure 8. Interpolating between two widths

perturbation data on the two ends by some regular (K il, J il) on Zil. The relative invariants,
constructed in Section 4.2 from the zero-dimensional moduli spaces, then provide maps
between the corresponding Floer cohomology groups

ΦZ01
: HF (L)0 → HF (L)1, ΦZ10

: HF (L)1 → HF (L)0.

The surface Z01#Z10 that is glued at {e−} = E−(Z01) and {e+} = E+(Z10) can be deformed

to the infinite strip with translationally invariant perturbation data (H 1, J1, δ1), hence
ΦZ01#Z10

is the identity on HF (L)1 (and similarly for ΦZ10#Z01
). Then, by the gluing

formula (34) we have

ΦZ01
◦ ΦZ10

= ΦZ01#Z10
= Id, ΦZ10

◦ ΦZ01
= ΦZ10#Z01

= Id.

This proves that the Floer cohomology groups HF (L)0 and HF (L)1 arising from the dif-
ferent choices of data are isomorphic. �
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Remark 4.3.2. One can also allow the sequence L to have length zero (that is, the empty
sequence) as a generalized correspondence from M to M ; this is the case r = −1 in the pre-
vious notation. In this case we define HF (L) = HF (IdM ), the cylindrical Floer homology.
This would be the case without seams in Figure 7.

5. An isomorphism of Floer cohomologies

In this section we prove Theorem 1.0.1, more precisely stated as follows.

Theorem 5.0.3. Let L = (L01, . . . , Lr(r+1)) be a cyclic sequence of compact, oriented
Lagrangian correspondences between symplectic manifolds M0, . . . ,Mr+1 = M0 as in Sec-
tion 3.3. Assume that

(a) the symplectic manifolds all satisfy (M1-2) with the same monotonicity constant τ ,
(b) the Lagrangian correspondences all satisfy (L1-3),
(c) the sequence L is monotone, relatively spin, and graded in the sense of Section 3.3;
(d) for some 1 ≤ j ≤ r the composition L(j−1)j ◦ Lj(j+1) is embedded in the sense of

Definition 2.0.5, monotone, and has minimal Maslov number at least three;
(e) the modified sequence L′ := (L01, . . . , L(j−1)j ◦ Lj(j+1), . . . , Lr(r+1)) is monotone.

Then with respect to the induced relative spin structure, orientation, and grading12 on L′

there exists a canonical isomorphism of graded groups

HF (L) = HF (. . . L(j−1)j , Lj(j+1) . . .)
∼→ HF (. . . L(j−1)j ◦ Lj(j+1) . . .) = HF (L′),

induced by the canonical identification of intersection points in Remark 2.3.3.

The isomorphism HF (L0 ×L12, L01 ×L2)
∼→ HF (L0 ×L2, L01 ◦L12) in Theorem 1.0.1 is

the special case HF (L0, L01, L12, L2)
∼→ HF (L0, L01 ◦ L12, L2) of the above theorem with

r = 3 and M0 = M4 = {pt}. The assumption on the minimal Maslov numbers is needed
only to make the Floer cohomology well-defined, see Theorem 7.2.6 for the general case.
The relative spin structures are only needed to define the Floer cohomology groups with
Z coefficients. In the following we will prove the isomorphism with Z2 coefficients. The
full result then follows from a comparison of signs in [46]. Similarly, the gradings on the
Lagrangians can be dropped if one wants only an isomorphism of ungraded groups.

For simplicity we give the proof in the setting of Theorem 1.0.1; the general case is
completely analogous. We denote L02 := L01◦L12 and fix (H0,H2) ∈ Ham(L0, L02, L2) such
that the perturbed intersection points I(L0, L02, L2) are finite and nondegenerate. Then
they are canonically identified with the perturbed intersection points I(L0, L01, L12, L2) for
(H0, 0,H2) ∈ Ham(L0, L01, L12, L2), i.e.

(35) L0 ×φH0 L02 ×φH2 L2
∼= L0 ×φH0 L01 ×IdM1

L12 ×φH2 L2.

Indeed, by assumption every point in L02 := L01 ◦ L12 has a unique lift to L01 ×IdM1
L12.

Moreover, the perturbed intersection points on the right hand side are also nondegener-
ate, since by assumption L01 × L12 is transverse to the diagonal in M1. So with the
choices (H0,H2) and (H0, 0,H2) of Hamiltonians we have a one-to-one correspondence

12The grading is given by (14), the orientation by the splitting (44) and the orientation of the diagonal
in Remark 2.2.1 (b), and for the relative spin structure see [46].



FUNCTORIALITY FOR LAGRANGIAN CORRESPONDENCES IN FLOER THEORY 49

I(L0, L02, L2) ∼= I(L0, L01, L12, L2) which induces a natural isomorphism of the Floer chain
groups

CF (L0, L01, L12, L2) = CF (L0 × L12, L01 × L2)
∼→ CF (L0 × L2, L02) = CF (L0, L02, L2).

Lemma 2.3.8 asserts that this is in fact an isomorphism of graded groups. In the light of
Proposition 4.3.1 it now suffices to show that this isomorphism descends to the cohomology
for an appropriate choice of almost complex structures and widths on the quilted strips. We
will prove this by establishing a bijection between the Floer trajectories for (L0, L02, L2) on
strips of width (1, 1) and those for (L0, L01, L12, L2) on strips of width (1, δ, 1) for sufficiently
small width δ of the middle strip. These Floer trajectories are holomorphic quilts associated
to the pictures in Figure 9.
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Figure 9. Shrinking the middle strip

Remark 5.0.4. The natural alternative approach to defining an isomorphism, or even just
a homomorphism HF (L0, L01, L12, L2) → HF (L0, L02, L2), is to try and interpolate the
middle strip to zero width in the relative invariant of Figure 8, as indicated on the left in
Figure 10. We however do not have a good analytic setup for seams running together within
a quilted surface.

In the spirit of Section 6.8 we could replace this picture by one where the seams corre-
sponding to L01, L12, L02 run into an infinite cylindrical end, as on the right in Figure 10.
This picture defines a relative invariant

HF (L02, (L01, L12)) ⊗HF ((L0, L01, L12), L2) → HF ((L0, L02), L2),

which in the notation of Section 6.8 is given by T ⊗ f 7→ ΦT (L0) ◦ f . Here ΦT : Φ(L02) →
Φ(L01, L12) is a natural transformation of functors associated to sequences of Lagrangian
correspondences, see Figure 38. The isomorphism in Theorem 5.0.3 can alternatively be
described by this relative invariant, where T ∈ HF (L02, (L01, L12)) is the morphism corre-
sponding to the identity 1L02 ∈ HF (L02, L02), see Corollary 5.4.3.

In the present setup, we will use the definition of Floer cohomology via quilted strips of
variable widths as in Section 4.3. For that purpose we fix regular Hamiltonians (H0,H2) ∈
Ham(L0, L02, L2) and almost complex structures (J0, J2) ∈ J reg

t (L0, L02, L2;H0,H2), and
we pick an almost complex structure J1 ∈ J (M1, ω1) (and the Hamiltonian H1 ≡ 0 on
M1). In order to transfer to the unperturbed equations we replace the Lagrangians L0

and L2 with their Hamiltonian translates φH0
0,1(L0) and φH2

1,0(L2), while replacing the almost

complex structures J0 and J2 with (φH0
t,1 )∗J0 and (φH2

t,0 )∗J2. So from now on we work with
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Figure 10. Alternative approaches to a homomorphism

the unperturbed equations for (by abuse of notation) the transformed Lagrangians L0, L2

and almost complex structures (J0, J2) ∈ J reg
t (L0, L02, L2; 0, 0), and with the same L01, L12

and J1 as before. In this setup the t-dependent almost complex structures J0 and J2 can
be chosen constant near t = 0 and t = 1. (This freedom of choice suffices to achieve
transversality of the moduli spaces for (L0, L02, L2).) The Floer chain groups are now
generated by the unperturbed intersection points

I := L0 ×IdM0
L02 ×IdM2

L2
∼= L0 ×IdM0

L01 ×IdM1
L12 ×IdM2

L2.

For any x−, x+ ∈ I we denote by M̃1
0(x

−, x+) the one dimensional (i.e. index 1) com-
ponent of the space of quilted Floer trajectories for (L0, L02, L2) with perturbation data

(H0,H2), (J0, J2) and widths (1, 1) of the strips. For δ > 0 we denote by M̃1
δ(x

−, x+) the
index 1 component of the space of quilted Floer trajectories for (L0, L01, L12, L2) with per-
turbation data (H0, 0,H2), Jδ and widths (1, δ, 1). Here roughly Jδ = (J0, J1, J2), but more
precisely we will be using J0,δ ∈ Jt(M0, ω0) and J2,δ ∈ Jt(M2, ω2) that converge to J0 and
J2 in the C∞-topology as δ → 0. Define

M1
0(x

−, x+) := M̃1
0(x

−, x+)/R, M1
δ(x

−, x+) := M̃1
δ(x

−, x+)/R,

then our task is to prove the following.

Theorem 5.0.5. For all sufficiently small δ > 0 the moduli spaces M1
δ(x

−, x+) are regular
and zero dimensional, and there is a bijection

Tδ : M1
0(x

−, x+) → M1
δ(x

−, x+).

We now describe the strategy of proof and introduce the relevant notations. First we
use the assumption that L01 ◦ L12 is embedded by π02. Consider a solution u = (u0, u2) ∈
M̃1

0(x
−, x+), that is a pair u0 : R× [0, 1] →M0, u2 : R× [0, 1] →M2 of index 1, with limits

lims→±∞(u0, u2)(s, ·) = x±, and satisfying

∂J0u0 = 0, ∂J2u2 = 0,

u0|t=0 ∈ L0, (u0|t=1, u2|t=0) ∈ L02, u2|t=1 ∈ L2.

We can identify (u0, u2) with the map u02 : R × [0, 1] → M0 ×M2 given by u02(s, t) =
(u0(s, 1 − t), u2(s, t)), which satisfies lims→±∞ u02(s, ·) = x± and

∂J02u02 = 0, u02|t=0 ∈ L02, u02|t=1 ∈ L0 × L2.

Here we denoted J02(s, t) := (−J0(s, 1 − t), J2(s, t)). We will also use the notation J̄02 :=
J02|t=0 and ū02 := u02|t=0 : R → L02. Finally, we will denote by (L01 × L12)

T ⊂ M0 ×
M2 ×M1 ×M1 the obvious transposition of factors in the Lagrangian submanifold. Since
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π02 : L01 ×M1 L12 → L02 ⊂M0 ×M2 is transversal and embedded (see Remark 2.0.6), there
exists a unique, smooth solution ū1 = `1 ◦ ū02 : R →M1 to

ū(s) := (ū02(s), ū1(s), ū1(s)) ∈ (L01 × L12)
T .

We also denote by ū := (ū02, ū1, ū1) the extension R× [0, δ] →M0 ×M2 ×M1 ×M1 that is
constant along [0, δ]. Given δ these choices are unique, so we can identify u with the pair
(u02, ū). In the same spirit we find unique points x±1 ∈ M1 such that (x±, x±1 ) ∈ (L0 ×
L12)∩ (L01×L2) ⊂M0×M1×M2. In this notation we have the limit lims→±∞ ū1(s) = x±1 .

Given a solution u ∈ M̃1
0(x

−, x+) as above and δ > 0 we wish to find a nearby solution

(v0, v1, v2) ∈ M̃1
δ(x

−, x+), that is a triple v0 : R × [0, 1] → M0, v1 : R × [0, δ] → M1,

v2 : R × [0, 1] → M2 with limits lims→±∞(v0, v2)(s, ·) = x±, lims→±∞ v1(s, ·) = x±1 , and
satisfying

∂J0v0 = 0, ∂J1v1 = 0, ∂J2v2 = 0,

v0(s, 0) ∈ L0, (v0(s, 1), v1(s, 0)) ∈ L01, (v1(s, δ), v2(s, 0)) ∈ L12, v2(s, 1) ∈ L2.

To solve this problem we use the assumption that L01 × L12 is transversal to the diagonal.
This is best done in the following reformulation of the δ-moduli spaces.

Let δ̄ := δ/(2 − δ) (or equivalently δ = 2δ̄/(1 + δ̄)). Instead of the triple strip we
consider a quadruple of maps v = (v02, v

′
02, v1, v

′
1) with v02 ∈ C∞(R × [0, 1],M0 × M2),

v′02 ∈ C∞(R×[0, δ̄],M0×M2), v1, v
′
1 ∈ C∞(R×[0, δ̄],M1) that have limits lims→±∞ v02(s, ·) =

lims→±∞ v′02(s, ·) = x±, lims→±∞ v1(s, ·) = lims→±∞ v1(s, ·) = x±1 , and satisfy

∂J02v02 = 0, ∂−J̄02
v′02 = 0, ∂−J1v

′
1 = 0, ∂J1v1 = 0,

(v′02, v02)|t=0 ∈ ∆0 × ∆2, (v′1, v1)|t=0 ∈ ∆1,(36)

(v′02, v
′
1, v1)|t=δ̄ ∈ (L01 × L12)

T , v02|t=1 ∈ L0 × L2.

For notational convenience we will also group these quadruples of maps as v = (v02, v̂)

with v̂ = (v′02, v1, v
′
1). Then we can abbreviate J = (J02, Ĵ) with Ĵ := (−J̄02,−J1, J1), and

reformulate (36) as

∂Jv :=
(
∂J02v02 , ∂Ĵ v̂

)
= 0,

(v02, v̂)|t=0 ∈ ∆0 × ∆2 × ∆1, v̂t=δ̄ ∈ (L01 × L12)
T , v02|t=1 ∈ L0 × L2.

We denote the moduli space of such solutions v = (v02, v̂) by M̂1
δ̄
(x−, x+). It is in one-to-

one correspondence to M̃1
δ(x

−, x+) as follows: Given v = (v02, v
′
02, v

′
1, v1) ∈ M̂1

δ̄
(x−, x+) we

obtain v̄ = (v0, v1, v2) ∈ M̃1
δ(x

−, x+) from

(
v0(s, 1 − t), v2(s, t)

)
=

{
v′02((1 + δ̄)s, δ̄ − (1 + δ̄)t) for 0 ≤ t ≤ 1

2δ,
v02((1 + δ̄)s, (1 + δ̄)t− δ̄) for 1

2δ ≤ t ≤ 1,

v1(s, t) =

{
v′1((1 + δ̄)s, δ̄ − (1 + δ̄)t) for 0 ≤ t ≤ 1

2δ,
v1((1 + δ̄)s, (1 + δ̄)t− δ̄) for 1

2δ ≤ t ≤ δ.

The two different formulations for double and triple strips each are indicated in Figure 11.
Strictly speaking, this triple strip (v0, v1, v2) only satisfies ∂Ji,δ

vi = 0 for i = 0, 2 with almost
complex structures Ji,δ that are given by rescaling J0 to [0, 1 − δ/2] and J2 to [δ/2, 1], and
extending them constantly by J0(1) and J2(0) respectively. Note however that Ji,δ → Ji
in the C∞-topology as δ → 0 since Ji is smooth and constant near t = 0, 1. So we can
use the almost complex structure Jδ = (J0,δ , J1, J2,δ) for the definition of the moduli spaces
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Figure 11. Double and triple strips

M̃1
δ(x

−, x+). The bijection Tδ to the moduli space M̃1
0(x

−, x+) can then be established via
a bijection

(37) Tδ̄ : M1
0(x

−, x+) → M1
δ̄(x

−, x+) := M̂1
δ̄(x

−, x+)/R.

This map will be constructed by the implicit function theorem 5.1.1. We prove injectivity
in corollary 5.1.6, and the surjectivity will follow from the compactness theorem 5.3.1.

5.1. Implicit function theorem. The purpose of this section is to construct the map
Tδ : M1

0(x
−, x+) → M1

δ(x
−, x+) of Theorem 5.0.5. We will do this by constructing the map

(37), with δ̄ replaced by δ, from the following implicit function theorem.

Theorem 5.1.1. There exist constants C0, ε > 0, and δ0 > 0 such that the following holds

for every δ ∈ (0, δ0]. For every u ∈ M̃1
0(x

−, x+) there exists a unique vu ∈ M̂1
δ(x

−, x+)
such that vu = eu(ξ) with ξ ∈ Γ1,δ(ε) ∩K0. The solution moreover satisfies

(38) ‖ξ‖H2
1,δ

≤ C0

√
δ.

Here eu(ξ) := (v02, v
′
02, v

′
1, v1) is given in terms of u = (u02, ū) and ξ = (ξ02, ξ̂) with

ξ02 ∈ Γ(u∗02T (M0 ×M2)) and ξ̂ = (ξ′02, ξ
′
1, ξ1) ∈ Γ(ū∗T (M0 ×M2 ×M1 ×M1)). The precise

definitions of the exponential map eu, the ε-ball Γ1,δ(ε), the H2
1,δ-norm, and the local slice

K0 of the R-shift symmetry will be given in the process of the proof.

To prove the theorem we fix a solution u ∈ M̃1
0(x

−, x+), and in the following will allow
all constants to depend on u up to translation in R. (Since M1

0(x
−, x+) is finite we can

then easily find uniform constants C0 and δ0 > 0.) We will then roughly solve ∂Jeu(ξ) = 0

for sections ξ = (ξ02, ξ̂), ξ̂ = (ξ′02, ξ
′
1, ξ1) satisfying the boundary conditions

(ξ′02, ξ02)|t=0 ∈ T(ū02,ū02)∆M0×M2 , (ξ′1, ξ1)|t=0 ∈ T(ū1,ū1)∆1,(39)

ξ̂|t=δ = (ξ′02, ξ
′
1, ξ1)|t=δ ∈ Tū(L01 × L12)

T , ξ02|t=1 ∈ Tu02(L0 × L2).

The exponential map eu(ξ) will then be constructed such that the nonlinear Lagrangian
boundary conditions are satisfied automatically. The index of the new solution vu will
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coincide with that of the given solution u due to Lemma 2.3.10. Here we identified vu with

a solution v̄u ∈ M̃1
δ̃
(x−, x+), δ̃ = 2δ/(1 + δ). Then the homotopy between vu = eu(ξ) and

(u02, ū) induces a homotopy v̄u ∼= (u0, ū1, u2).
To set up the implicit function theorem we introduce the space ofH k-sections over (u02, ū)

for k ∈ N0,

Hk
1,δ :=





(η02, η
′
02, η

′
1, η1)

∣∣∣∣∣∣∣∣

η02 ∈ Hk(R × [0, 1], u∗02T (M0 ×M2)),

η′02 ∈ Hk(R × [0, δ], ū∗02T (M0 ×M2)),

η′1, η1 ∈ Hk(R × [0, δ], ū∗1TM1)




.

We also write these sections as η = (η02, η̂) ∈ Hk
1,δ, where the subscripts indicate the width

of the domains of η02 and η̂ = (η′02, η
′
1, η1) ∈ Hk(R× [0, δ], ū∗T (M0 ×M2 ×M1 ×M1)). The

corresponding Hk-norm on this space is
∥∥(η02, η

′
02, η

′
1, η1)

∥∥2

Hk
1,δ

:= ‖η02

∥∥2

Hk(R×[0,1])
+ ‖η̂

∥∥2

Hk(R×[0,δ])

= ‖η02

∥∥2

Hk(R×[0,1])
+ ‖η′02

∥∥2

Hk(R×[0,δ])
+ ‖η′1

∥∥2

Hk(R×[0,δ])
+ ‖η1

∥∥2

Hk(R×[0,δ])
.

We denote the space of H2-sections satisfying the boundary conditions by

Γ1,δ :=
{
ξ ∈ H2

1,δ

∣∣ (39)
}

and equip this space with the norm
∥∥ξ
∥∥

Γ1,δ
:= ‖ξ

∥∥
H2

1,δ
+ ‖∇ξ

∥∥
L4

1,δ
,

with the L4-norm ‖∇(ξ02, ξ̂)‖L4
1,δ

:=
(
‖∇ξ02‖4

L4
1,δ(R×[0,1])

+‖∇ξ̂‖4
L4

1,δ(R×[0,δ])

)1/4
on the multi-

strip. We denote the ε-ball in Γ1,δ by

Γ1,δ(ε) :=
{
ξ ∈ H2

1,δ

∣∣ ‖ξ‖Γ1,δ
< ε, (39)

}
.

We equip the target space Ω1,δ := H1
1,δ with the norm

‖η‖Ω1,δ
:= ‖η‖H1

1,δ
+ ‖η‖L4

1,δ
.

The reason for adding the L4-norms in domain and target is that we do not have uniform
Sobolev embeddings on the strips of varying width. Instead, we build the necessary Sobolev
multiplication properties into the norms.

Next, we make some preparations for defining an exponential map that is compatible
with the boundary conditions (39).

Lemma 5.1.2. (Existence of compatible quadratic corrections) There exists ε0 > 0 and
smooth families of maps (defined on the ε0-balls)

Qs : Tū(s)

(
M0 ×M2 ×M1 ×M1

)
⊃ Bε0 → Tū(s)

(
M0 ×M2 ×M1 ×M1

)
, ∀s ∈ R,

Q02
s,t : Tu02(s,t)(M0 ×M2) ⊃ B02

ε0 → Tu02(s,t)(M0 ×M2) ∀(s, t) ∈ R × [0, 1],

that are a diffeomorphism onto their image and have the following properties:

(Quadratic): Qs(0) = 0, dQs(0) ≡ 0, Q02
s,t(0) = 0, and dQ02

s,t(0) ≡ 0 for all (s, t) ∈
R×[0, 1]. In particular, there is a constant CQ such that for all ξ̂ ∈ Bε0 and ξ02 ∈ B02

ε0

(40) |Qs(ξ̂)| ≤ CQ|ξ̂|2, |Q02
s,t(ξ02)| ≤ CQ|ξ02|2.
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(Linearizing L01 × L12): expū(s) ◦ (1 + Qs) maps Tū(s)(L01 × L12)
T ∩ Bε0 to (L01 ×

L12)
T .

(Linearizing M0 ×M2 ×∆1): expū(s) ◦ (1 + Qs) maps Tū(s)(M0 ×M2 × ∆1) ∩ Bε0
to M0 ×M2 × ∆1.

(Linearizing L02): expu02(s,1) ◦ (1 +Q02
s,1) maps Tu02(s,1)L02 ∩B02

ε0 to L02.

(Compatible): Restricting Qs to Tū(M0 ×M2 × ∆1) and composing it with the pro-
jection Pr02 : T(ū02,ū1,ū1)(M0 ×M2 ×M1 ×M1) → Tū02(M0 ×M2) yields a map that
is independent of the T(ū1,ū1)∆1-component. The resulting family

Q02
s : Tū02(s)(M0 ×M2) ⊃ B02

ε0 → Tū02(s)(M0 ×M2)

coincides with Q02
s,0.

Proof. We fix s ∈ R and restrict the exponential map expū(s) to a geodesic ball around
0. The subsequent constructions will depend smoothly on s ∈ R, which we drop from
now on. By assumption the submanifold L0211 := exp−1

ū (L01 × L12)
T in the vector space

X := Tū(M0×M2×M1×M1) is transverse to the subspace ∆ := Tū(M0×M2×∆1). Their

intersection L̂02 := L0211 ∩ ∆ is diffeomorphic to the submanifold L02 := exp−1
ū02

(L02) ⊂
Tū02(M0 ×M2) by a map (m0,m2) 7→ (m0,m2,m1,m1) with uniquely determined m1 =
m1(m0,m2). So we have a direct sum decomposition

∆ = Tū02(M0 ×M2) × T(ū1,ū1)∆1 = T0L̂02 ⊕
(
(T0L02)

⊥ × {0}
)
⊕
(
{0} × T(ū1,ū1)∆1

)
.

As a submanifold we can now write L̂02 ⊂ ∆ as the graph of a map ψ over a sufficiently
small ε-ball,

ψ = ψ⊥
02 × ψ11 : T0L̂02 ⊃ Bε →

(
T0L02

)⊥ × T(ū1,ū1)∆1

with ψ(0) = 0 and dψ(0) ≡ 0. We moreover pick a complement C of T0L̂02 ⊂ T0L0211,

T0L0211 = C ⊕ T0L̂02,

then the transversality X = T0L0211 + ∆ implies the splitting

(41) X = C ⊕ T0L̂02 ⊕
(
T0L02

)⊥ × {0} ⊕ {0} × T(ū1,ū1)∆1.

We write X 3 x = xC + x02 + (x⊥02, 0) + (0, x11) in this splitting and define a map Ψ : X ⊃
Bε → X by

Ψ(x) := x+ (ψ⊥
02(x02), 0) + (0, ψ11(x02))

= xC + x02 + (x⊥02 + ψ⊥
02(x02), 0) + (0, x11 + ψ11(x02)).
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L̂02

L0211

∆

T0L02
ψ

This map linearizes the intersection, Ψ(T0L̂02) = L̂02, and we have Ψ(0) = 0 and dΨ(0) =
Id. In order to linearize the entire Lagrangian L0211 we remark that T0

(
Ψ−1(L0211)

)
=

dΨ(0)−1T0L0211 = T0L0211. So we can write Ψ−1(L0211) as graph of a map

φ = φ⊥02 × φ11 : T0L0211 ⊃ Bε →
(
Tū02L02

)⊥ × T(ū1,ū1)∆1

with φ(0) = 0, dφ(0) ≡ 0, and by the previous construction φ|T0L̂02
≡ 0.

∆

T0Ψ−1(L̂02)=Ψ−1(L̂02)

Ψ−1L0112

T0Ψ
−1L0112

Finally we define the entire linearization Φ : X ⊃ Bε → X by

Φ(x) := Ψ
(
x+ (φ⊥02(xC + x02), 0) + (0, φ11(xC + x02))

)

for x = xC + x02 + (x⊥02, 0) + (0, x11) in the splitting (41). Now Qs := Φ − Id is quadratic
and linearized (L01 × L12)

T by construction. Explicitly, we have

(42) Qs(x) =
(
ψ⊥

02(x02) + φ⊥02(xC + x02), ψ11(x02) + φ11(xC + x02)
)
.

The construction moreover ensures that Qs linearizes M0 ×M2 × ∆1, that is Φ(∆) ⊂ ∆,
since x ∈ ∆ = {xC = 0} is mapped to Φ(x) = x+

(
ψ⊥

02(x02), ψ11(x02)
)
∈ ∆.

To construct Q02
s compatible with Qs note that for x = (m0,m2,m1,m1) ∈ Tū(M0 ×

M2 × ∆1) ⊂ X we have a splitting

x = (m0,m2, 0, 0) + (0, 0,m1,m1) = xC + x02 + (x⊥02, 0) + (0, x11 + (m1,m1)),
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where xC , x02, x
⊥
02, x11 only depend on (m0,m2). With this we can see in (42) that in-

deed Qs(m0,m2,m1,m1) is independent of m1. We then simply define Q02
s,0(m0,m2) :=

Pr02Qs(m0,m2, 0, 0). Moreover, a graph construction as above provides a map Q02
s,1 :

Tu02(s,1)(M0 × M2) ⊃ B02
ε → Tu02(s,1)(M0 × M2) that is quadratic and linearizes L02.

Now the two families Q02
s,0 and Q02

s,1 can easily be interpolated by the smooth family

Q02
s,t := (1 − t)Q02

s,0 + tQ02
s,1 of quadratic maps. �

With these quadratic corrections we can now define the exponential map eu by eu(ξ) :=

(eu02(ξ02), eū(ξ̂)) for ξ = (ξ02, ξ̂) ∈ Γ1,δ(ε), where

eu02(ξ02) := expu02
◦ (1 +Q02)(ξ02), eū(ξ̂) := expū ◦ (1 +Q)(ξ̂).(43)

Note that we have the usual properties of an exponential map,

eu(0) = (u02, ū), deu(0) = Id.

To define eu on Γ1,δ(ε) the ε > 0 should be chosen such that ‖ξ02‖C0 and ‖ξ̂‖C0 are sufficiently
small for the quadratic corrections in Lemma 5.1.2 to be defined. Lemma 5.1.4 below

ensures that we can pick a uniform ε > 0 for all δ > 0. Now solutions vu ∈ M̂1
δ(x

−, x+) in
a neighborhood of u correspond to zeroes of the map Fu : Γ1,δ(ε) → Ω1,δ given by

Fu(ξ) :=
(
Φu02(ξ02)

−1(∂J02eu02(ξ02)) , Φū(ξ̂)
−1(∂ Ĵeū(ξ̂))

)
.

Here Φu(ξ) denotes the parallel transport TuM → Teu(ξ)M along the path τ 7→ eu(τξ).
For Φu02 this parallel transport on T (M0 ×M2) can simply use the Levi-Civita connection.

In the definition of Φū we however use a Hermitian connection ∇̃ on the tangent bundle
T (M0×M2×M1×M1) that leaves Ĵ invariant. This can be done by the same construction
as in [26, Proposition 3.1.1], which brings the linearized operator into simple form.

Next, we introduce projections related to the various Lagrangians:

π⊥0211 ∈ Aut
(
C∞(R, ū∗T (M0 ×M2 ×M1 ×M1))

)
,

π02 , π
⊥
02 ∈ Aut

(
C∞(R, ū∗02T (M0 ×M2))

)

are linear operators, given by pointwise orthogonal projection onto the subspaces (T (L01 ×
L12)

T )⊥ ⊂ T (M0 ×M2 ×M1 ×M1) resp. TL02, (TL02)
⊥ ⊂ T (M0 ×M2). The following

lemma contains the estimates resulting from the transversality assumption.

Lemma 5.1.3. (Quantitative transversality) There exists a constant C such that the fol-
lowing holds.

(a) For every s ∈ R and ξ̂ = (ξ′02, ξ
′
1, ξ1) ∈ Tū(s)(M0 ×M2 ×M1 ×M1)

|ξ̂| ≤ C
(
|π02ξ

′
02| +

∣∣ξ′1 − ξ1
∣∣+
∣∣π⊥0211ξ̂

∣∣),
|π⊥02ξ′02| ≤ C

(
|π⊥0211ξ̂| + |ξ′1 − ξ1|

)
.

(b) For every ξ̂ ∈ C∞(R, ū∗T (M0 ×M2 ×M1 ×M1))

‖ξ̂‖H1(R) ≤ C
(
‖π02ξ

′
02‖H1(R) + ‖ξ′1 − ξ1‖H1(R) + ‖π⊥0211 ξ̂‖H1(R)

)
,

and the same holds with H1 replaced by C1 or Lp for any p ≥ 1. Moreover,

‖π⊥02ξ′02‖L2(R) ≤ C
(
‖π⊥0211ξ̂‖L2(R) + ‖ξ′1 − ξ1‖L2(R)

)
,

‖π⊥02ξ′02‖H1(R) ≤ C
(
‖π⊥0211ξ̂‖H1(R) + ‖ξ′1 − ξ1‖H1(R) +

∥∥|∂sū| · |ξ̂|
∥∥
L2(R)

)
.
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Proof. The Lagrangian L01×L12 intersects M0×∆1×M2 transversally in L̂02, which injects
to L02 ⊂M0 ×M2. So at every point of L̂02 we have a decomposition T (M0 ×M2 ×M1 ×
M1) = T L̂02 ⊕ (T L̂02)

⊥, where we can change the first factor to TL02 × {0}. On the other
hand, the transverse intersection implies

(44) (T L̂02)
⊥ =

(
{0} × (T∆1)

⊥
)
⊕ T (L01 × L12)

⊥,

so we obtain a splitting

(45) T (M0 ×M2 ×M1 ×M1) =
(
TL02 × {0}

)
⊕
(
{0} × (T∆1)

⊥
)
⊕ T (L01 × L12)

⊥.

This means that the product of the three orthogonal projections onto the factors defines an
isomorphism. The norm of this isomorphism is bounded at each ū(s) ∈ L̂02, so for every

ξ̂ = (ξ′02, ξ
′
1, ξ1) ∈ Tū(s)(M0 ×M2 ×M1 ×M1) we have

|ξ̂| ≤ C
(
|π02ξ

′
02| +

∣∣ξ′1 − ξ1
∣∣+
∣∣π⊥0211ξ̂

∣∣)

with a uniform constant C as claimed in (a). (Here the projection onto (T∆1)
⊥ is given by

(ξ′02, ξ
′
1, ξ1) 7→ 1

2(ξ′1 − ξ1, ξ1 − ξ′1).) Moreover, the splitting (45) commutes with

T (M0 ×M2) = TL02 ⊕ (TL02)
⊥

via the canonical projection on the left hand side, and on the right hand side the identity on
TL02 combined with a bounded map

(
{0} × (T∆1)

⊥
)
⊕ T (L01 ×L12)

⊥ → TL02 ⊕ (TL02)
⊥.

This implies that

|π⊥02ξ′02| ≤ C
(
|π⊥0211ξ̂| + |ξ′1 − ξ1|

)

with another uniform constant C. This proves (a). For ξ̂ ∈ C∞(R, ū∗T (M0×M2×M1×M1))

we can then apply the pointwise estimates to ξ̂(s) and integrate over s ∈ R to obtain for
any p ≥ 1 including p = ∞

‖ξ̂‖Lp(R) ≤ C
(
‖π02ξ

′
02‖Lp(R) + ‖ξ′1 − ξ1‖Lp(R) + ‖π⊥0211 ξ̂‖Lp(R)

)
,(46)

‖π⊥02ξ′02‖Lp(R) ≤ C
(
‖π⊥0211 ξ̂‖Lp(R) + ‖ξ′1 − ξ1‖Lp(R)

)
.

In order to prove the H1- and C1-estimates we also apply the pointwise estimates to ∇sξ̂(s),

|∇sξ̂| ≤ C
(
|π02(∇sξ

′
02)| +

∣∣∇sξ
′
1 −∇sξ1

∣∣+
∣∣π⊥0211(∇sξ̂)

∣∣),
|π⊥02(∇sξ

′
02)| ≤ C

(
|π⊥0211(∇sξ̂)| + |∇sξ

′
1 −∇sξ1|

)
.

Here we will need the inequalities

|π02(∇sξ
′
02)| ≤ C

(
|∇s(π02(ξ

′
02))| + |ξ̂|

)
,

|π⊥0211(∇sξ̂)| ≤ C
(
|∇s(π

⊥
0211(ξ̂))| + |∂sū| · |ξ̂|

)
,

|∇s(π
⊥
02(ξ

′
02))| ≤ C

(
|π⊥02(∇sξ

′
02)| + |∂sū| · |ξ̂|

)
.

The first inequality (and similarly the others) can be seen by writing ξ ′02 in a local orthonor-
mal frame given by (γi(s))i=1,...,k ∈ ū02(s)

∗TL02 and (ηi(s))i=1,...,K ∈ ū02(s)
∗(TL02)

⊥. Writ-

ing ξ̂ =
∑
λiγi +

∑
µiηi we have

∣∣π02(∇sξ
′
02) −∇s(π02(ξ

′
02))

∣∣ =
∣∣∣
∑

λi
(
π02(∇sγi) −∇sγi

)
+
∑

µiπ02∇s(ηi)
∣∣∣

≤ C|∂sū02| · |ξ′02|.
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Note here that ∇sγi = ∇∂sū02γi and ∇sηi = ∇∂sū02ηi are uniformly bounded. Putting

things together we obtain the first estimate in (b) with an extra ‖ξ̂‖L2(R) or ‖ξ̂‖C0(R) on the
right hand side, for which we can use (46). For the last estimate in (b) we obtain

‖∇s(π
⊥
02ξ

′
02)‖L2(R) ≤ C

(
‖∇s(π

⊥
0211ξ̂)‖L2(R) + ‖∇sξ

′
1 −∇sξ1‖L2(R) +

∥∥|∂sū| · |ξ̂|
∥∥
L2(R)

)
.

This finishes the proof of (b). �

The following lemma contains a Sobolev estimate with a constant independent of the
width δ of the middle strip; here the transversality assumption is used in a crucial way.

Lemma 5.1.4. (Uniform Sobolev Estimate) There is a constant CS such that for all δ ∈
(0, 1] and ξ = (ξ02, ξ̂) ∈ H2

1,δ

‖ξ02‖C0([0,1],H1(R)) + ‖ξ̂‖C0([0,δ],H1(R))

≤ CS
(
‖ξ‖H2

1,δ
+ ‖(ξ02 − ξ′02)|t=0‖H1(R) + ‖(ξ1 − ξ′1)|t=0‖H1(R) + ‖π⊥0211ξ̂|t=δ‖H1(R)

)
.

In particular, for all p > 2 including p = ∞ and for ξ ∈ Γ1,δ satisfying the boundary
conditions (39),

‖ξ02‖Lp(R×[0,1]) + ‖ξ̂‖Lp(R×[0,δ]) ≤ CS‖ξ‖H2
1,δ
.

Proof. The C0- and Lp-estimates will follow from the continuous embeddings H 1(R) ↪→
C0(R) and H1(R) ↪→ Lp(R) for p ≥ 2. So it suffices to suppose by contradiction that there

are sequences δν > 0 and ξν ∈ H2
1,δν with ‖ξν02‖C0([0,1],H1(R)) + ‖ξ̂ν‖C0([0,δν ],H1(R)) = 1 but

‖ξν‖H2
1,δν

+ ‖(ξν02 − ξ′ν02)|t=0‖H1(R) + ‖(ξν1 − ξ′ν1 )|t=0‖H1(R) + ‖π⊥0211ξ̂ν |t=δν‖H1(R) → 0. By the

standard Sobolev embedding

H2([0, 1] × R) ⊂ H1([0, 1], X) ↪→ C0([0, 1], X) with X = H1(R)

this implies ‖ξν02‖C0([0,1],H1(R)) → 0, and so

(47) ‖ξ′ν02|t=0‖H1(R) ≤ ‖ξν02|t=0‖H1(R) + ‖(ξν02 − ξ′ν02)|t=0‖H1(R) → 0.

We can moreover integrate for all t0 ∈ [0, δν ] to obtain

(48) ‖ξ̂ν |t=t0 − ξ̂ν |t=δν‖2
H1(R) ≤ δν

∫ δν

0
‖∇tξ̂

ν‖2
H1(R) ≤ δν‖ξ̂ν‖2

H2(R×[0,δν ]) → 0.

Using Lemma 5.1.3 we then obtain

‖ξ̂ν |t=δν‖H1(R)

≤ C
(
‖π02ξ

′ν
02|t=δν‖H1(R) + ‖(ξν1 − ξ′ν1 )|t=δν ‖H1(R) + ‖π⊥0211 ξ̂ν |t=δν‖H1(R)

)

≤ C
(
‖π02(ξ

′ν
02|t=δν − ξ′ν02|t=0)‖H1(R) + ‖π02(ξ

′ν
02)|t=0‖H1(R)

+ ‖(ξν1 − ξ′ν1 )|t=0‖H1(R) + 2‖ξ̂ν |t=δν − ξ̂ν |t=0‖H1(R) + ‖π⊥0211ξ̂ν |t=δν‖H1(R)

)

→ 0

with uniform constants C,C ′ by (39), (47), (48), and a bound on the operator norm of π02.

Now combining ‖ξ̂ν |t=δν‖H1(R) → 0 with (48) proves

‖ξ̂ν‖C0([0,δν ],H1(R)) → 0

in contradiction to the assumption. �
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The solution u of the 0-equation corresponds to ξ = 0, which is an almost zero of Fu.
This and a quadratic estimate for dFu near 0 is the content of the next lemma. For later
purposes we also compare dFu(ξ) with the linearized operator Deu(ξ) of ∂J = (∂J02 , ∂ Ĵ) at
eu(ξ). To state the comparison we will need the pointwise linear operator

Eu(ξ)η := d
dτ eu(ξ + τη)|τ=0.

It satisfies Eu(0) = Id, and since eu maps Γ1,δ to the space of maps satisfying the bound-
ary conditions in (36), the linearization Eu(ξ) maps Γ1,δ to the space of sections ζ ∈
Γ(v∗02TM02) × Γ(v̂∗TM0211) over v = (v02, v̂) := eu(ξ), that satisfy the linearized boundary
conditions

(ζ02, ζ)|t=0 ∈ Tv(∆0 × ∆2 × ∆1), ζ̂|t=δ ∈ Tv̂(L01 × L12), ζ02|t=1 ∈ Tv02(L0 × L2).

The linearized operator Dv acts on this space of sections and is given by

Dvζ = ∇̃τ∂Jev(τζ)|τ=0

with respect to the connection ∇̃ introduced on page 56. In this notation we have Deu(0) =
dFu(0).
Lemma 5.1.5. (Uniform quadratic and error estimates) There are uniform constants ε > 0
and C1, C2, C3 such that for all δ ∈ (0, 1] and ξ ∈ Γ1,δ(ε), η ∈ Γ1,δ

‖Fu(0)‖Ω1,δ
≤ C1

√
δ,

‖dFu(ξ)η − dFu(0)η‖Ω1,δ
≤ C2‖ξ‖Γ1,δ

‖η‖Γ1,δ
,

‖dFu(ξ)η − Φu(ξ)
−1Deu(ξ)Eu(ξ)η‖Ω1,δ

≤ C3‖ξ‖Γ1,δ
‖η‖Γ1,δ

.

Proof. To estimate Fu(0) we recall that u02 is holomorphic and ū is constant in t, so

‖Fu(0)‖2
Ω1,δ

= ‖(0, ∂sū)‖2
H1

1,δ
= δ
(
‖∂su02|t=0‖2

H1(R) + 2‖∂sū1‖2
H1(R)

)
= C2

1δ.

Since ∂su02 → 0 converges exponentially as s → ±∞, so does ∂sū1 = d`1(∂sū02) (see Re-
mark 2.0.6), and hence the above constant C1 is finite. For the third estimate we differentiate
as in [26, p.68] the identity Φu(ξ + τη)Fu(ξ + τη) = ∂J(eu(ξ + τη)) to obtain

(49) Φu(ξ)dFu(ξ)η −Deu(ξ)Eu(ξ)η = −Ψu(ξ, η,Fu(ξ)),
where the estimate for the right hand side

Ψu(ξ, η, ζ) := ∇̃τ (Φu(ξ + τη)ζ)|τ=0

is part of the estimates below. The first component of Fu is independent of δ, so the
quadratic estimates for it simply follow from the continuous differentiability of Fu. For the
second component we follow the argument in [26, Prop.3.5.3.] to obtain a uniform constant
for all δ ∈ (0, 1]. We need to consider

Fū(ξ̂) := Φū(ξ̂)
−1(∂ Ĵeū(ξ̂)),

where eū(ξ̂) = expū(ξ̂ +Q(ξ̂)) is the exponential map with quadratic correction defined in

(43). Note that our parallel transport Φū(ξ̂) is defined with respect to the path τ 7→ eū(τ ξ̂)

and the Hermitian connection ∇̃ on T (M0 ×M2 ×M1 ×M1) that leaves Ĵ invariant. Since
eū(0) = ū and deū(0) = Id, the same path can be used in the definition of ∇ξ̂ instead of the

geodesic. Now let ξ, η ∈ Γ1,δ with ‖ξ‖H2
1,δ

≤ ε. Then by Lemma 5.1.4

‖ξ̂‖C0 ≤ CS‖ξ‖H2
1,δ

≤ CSε =: c0, ‖η̂‖C0 ≤ CS‖η‖H2
1,δ
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with a uniform constant CS thus a uniform constant c0 that only depends on ε. In the
following, all constants will be uniform in the sense that they only depend on c0 and hence
ε. Next, we consider

Eū(ξ̂)η̂ := d
dτ eū(ξ̂ + τ η̂)|τ=0, Ψū(ξ̂, η̂, ζ) := ∇̃τ (Φū(ξ̂ + τ η̂)ζ)|τ=0.

Note that Eū(0) = Id and that Ψ(0, η̂, ζ) = 0 since the covariant derivative exactly uses the
parallel transport Φū(τ η̂). Moreover, these maps are linear in η̂ and ζ, and they depend

smoothly on ξ̂. So given ε and thus |ξ̂| ≤ c0 we have linear bounds

|Eū(ξ̂)| ≤ c1, |∇(Eū(ξ̂))| ≤ c1
(
|∇ξ̂| + |dū||ξ̂|

)
, |Ψū(ξ̂, η̂, ζ)| ≤ c1|ξ̂||η̂||ζ|

with a uniform constant c1. With these preparations we calculate from (49), using the
notation of [26, Prop.3.5.3.],

Φū(ξ̂)
(
dFū(ξ̂)η̂ − dFū(0)η̂

)

= −Ψū(ξ̂, η̂,Fū(ξ̂)) +
(
∇(Eū(ξ̂))η̂

)0,1
+
((
Eū(ξ̂) − Φū(ξ̂)

)
∇η̂
)0,1

− 1
2 Ĵ(eū(ξ̂))

((
(∇(Eū(ξ̂)η̂−Φū(ξ̂)η̂)Ĵ)(eū(ξ̂))

)
Φū(ξ̂)dū

)0,1

− 1
2 Ĵ(eū(ξ̂))

((
(∇Φū(ξ̂)η̂Ĵ)(eū(ξ̂)) − Φū(ξ̂)(∇η̂ Ĵ)(ū)Φū(ξ̂)

−1
)
Φū(ξ̂)dū

)0,1

− 1
2 Ĵ(eū(ξ̂))

(
(∇Eū(ξ̂)η̂Ĵ)(eū(ξ̂))(d(eū(ξ̂)) − Φū(ξ̂)dū)

)0,1
.

We then use the uniform bounds on ‖∇Ĵ‖∞, |dū|, |ξ̂|, and the estimates

|Fū(ξ̂)| ≤ |d(eū(ξ̂))| ≤ c2
(
|∇ξ̂| + |dū|

)
, |d(eū(ξ̂)) − Φū(ξ̂)dū| ≤ c2

(
|∇ξ̂| + |dū||ξ̂|

)
,

∣∣Eū(ξ̂) − Φū(ξ̂)
∣∣ ≤ c2|ξ̂|,

∣∣(∇Φū(ξ̂)η̂Ĵ)(eū(ξ̂)) − Φū(ξ̂)(∇η̂ Ĵ)(ū)Φū(ξ̂)
−1
∣∣ ≤ c2|ξ̂||η̂|

with a uniform constant c2 to obtain with a further uniform constant c3
∣∣dFū(ξ̂)η̂ − dFū(0)η̂

∣∣ ≤ c3
(
|ξ̂||η̂| + |η̂||∇ξ̂| + |ξ̂||∇η̂|

)
.

So far these pointwise estimates were standard calculations. Now we have to check that
they actually lead to uniform bounds in the δ-dependent norms. The zeroth order part of
the Ω1,δ-norm over R × [0, δ] can be estimated with the help of Lemma 5.1.4 by

∥∥dFū(ξ̂)η̂ − dFū(0)η̂
∥∥
L2 ≤ c3

(
‖ξ̂‖L4‖η̂‖L4 + ‖η̂‖C0‖∇ξ̂‖L2 + ‖ξ̂‖C0‖∇η̂‖L2

)

≤ c3(C
2
S + 2CS)‖ξ‖H2

1,δ
‖η‖H2

1,δ
,

∥∥dFū(ξ̂)η̂ − dFū(0)η̂
∥∥
L4 ≤ c3

(
‖ξ̂‖L8‖η̂‖L8 + ‖η̂‖C0‖∇ξ̂‖L4 + ‖ξ̂‖C0‖∇η̂‖L4

)

≤ c3(C
2
S + 2CS)

(
‖ξ‖H2

1,δ
+ ‖ξ‖L4

1,δ

)(
‖η‖H2

1,δ
+ ‖∇η‖L4

1,δ

)
.

For the first order part of the Ω1,δ-norm one differentiates the above identity and uses

further bounds on ‖∇2Ĵ‖∞ and |∇dū| to find a pointwise bound

∣∣∇
(
dFū(ξ̂)η̂ − dFū(0)η̂

)∣∣ ≤ c4
(
|ξ̂| + |∇ξ̂|

)(
|η̂| + |∇η̂|

)

+ c4
(
|∇2ξ̂||η̂| + |∇ξ̂|2|η̂| + |∇ξ̂||∇η̂| + |ξ̂||∇2η̂|

)
.
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Then we again use Lemma 5.1.4 and ‖∇ξ̂‖L2 ≤ ε to obtain with a final uniform constant c5
∥∥∇
(
dFū(ξ̂)η̂ − dFū(0)η̂

)∥∥
L2

≤ c4
(
‖ξ̂‖L4 + ‖∇ξ̂‖L4

)(
‖η̂‖L4 + ‖∇η̂‖L4

)

+ c4
(
‖∇2ξ̂‖L2‖η̂‖C0 + ‖∇ξ̂‖L2‖∇ξ̂‖L4‖η̂‖L4 + ‖∇ξ̂‖L4‖∇η̂‖L4 + ‖ξ̂‖C0‖∇2η̂‖L2

)

≤ c5
(
‖ξ‖H2

1,δ
+ ‖∇ξ‖L4

1,δ

)(
‖η‖H2

1,δ
+ ‖∇η‖L4

1,δ

)
.

�

Theorem 5.1.1 now follows from the implicit function theorem [26, A.3.4] if we can es-
tablish surjectivity and a uniform bound on the right inverse for the linearized operator

(50) Dδ := dFu(0) : Γ1,δ → Ω1,δ, Dδξ =
(
Du02ξ02 , Dūξ̂

)

with

Du02ξ02 = ∇sξ02 + J(u02)∇tξ02 + ∇ξ02J02(u02)∂tu02,

Dūξ̂ = ∇sξ̂ + Ĵ(ū)∇tξ̂ + 1
2∇ξ̂Ĵ(ū)Ĵ(ū)∂sū.

Here Du02 and Dū are the linearized operators of ∂J02 at u02 (which is holomorphic) and
of ∂Ĵ at ū (which satisfies ∂tū = 0) respectively. (See [26, Prop.3.1.1.] for an explicit

calculation of the linearized operators, and note that we identify Ω0,1(R × [0, 1], u∗TM)
with sections of u∗TM by γds + Jγdt 7→ γ.) We can identify the cokernel of Dδ with
(imDδ)⊥ ⊂ (H1

1,δ)
∗. By elliptic regularity any element in this cokernel can be represented

by the L2-inner product 〈η, imDδ〉 = 0 with a smooth section η. Partial integration then
shows that η ∈ Γ1,δ satisfies the boundary conditions (39) and lies in the kernel of the formal

adjoint operator, (Dδ)∗η = 0. Note that (Dδ)∗ is given by
(
−∇s+J02(u02)∇t,−∇s+Ĵ(ū)∇t

)

plus lower order terms. So (Dδ)∗ has the same analytic properties as Dδ, and we will prove
the surjectivity of Dδ by establishing injectivity for (Dδ)∗.

By our assumptions on the index and regularity of (u0, u2) ∈ M̃1
0(x

−, x+) we know that
the operator Du02 ⊕ π⊥02 on the space of sections in H2(u∗02T (M0 ×M2)) with boundary
conditions at t = 1 in T (L0 × L2) (where π⊥02 is the projection at t = 0) is surjective and
has a one dimensional kernel ker(Du02 ⊕π⊥02). This is not a subspace of Γ1,δ, but we will fix
a complement for every δ > 0 in the following sense,

K0 :=
{
ξ = (ξ02, ξ̂) ∈ Γ1,δ

∣∣ 〈ξ02, ker(Du02 ⊕ π⊥02)〉L2 ≡ 0
}
.

Here we used the L2-inner product on H2(R × [0, 1], u∗02T (M0 ×M2)).
Combining the uniform linear estimates Lemma 5.2.1 and Lemma 5.2.2 we can choose

δ0 := 1
16c

2
1c

2
2 > 0 such that for all δ ∈ (0, δ0) and ξ ∈ Γ1,δ

(1 + c−1
2 )‖(Dδ)∗ξ‖Ω1,δ

≥ 1
2‖(Dδ)∗ξ‖H1

1,δ
+ 1

2‖(Dδ)∗ξ‖L4
1,δ

+ c−1
2 ‖D∗

u02
ξ02‖H1(R×[0,1])

≥ 1
2c1‖ξ‖Γ1,δ

− c−1
2

√
δ‖∇tξ̂‖H1(R×[0,δ]) ≥ 1

4c1‖ξ‖Γ1,δ
,

and similarly for all ξ ∈ Γ1,δ ∩K0

‖Dδξ‖Ω1
1,δ

≥ c1c2
4(c2 + 1)

‖ξ‖Γ1,δ
.(51)

The first estimate shows that (Dδ)∗ is injective and hence Dδ is surjective. The second
estimate shows that its right inverse is uniformly bounded. It remains to check that D δ
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stays surjective when restricted to K0. This follows from the fact that both Du02 with
boundary conditions in (L02, L0 × L2) and Dδ = (Du02 , Dū) with boundary conditions
(39) are surjective and have the same index 1 by Lemma 2.3.10 and the identification

M̃1
δ̄
(x−, x+) ∼= M̂1

δ̄
(x−, x+). So Dδ has a 1-dimensional kernel, which is transversal to

K0 by the last estimate, and hence Dδ|K0 must be surjective. This finishes the proof of
theorem 5.1.1. Here ε > 0 is fixed such that the exponential map eu is defined on Γ1,δ(ε)
and such that Lemma 5.1.5 holds.

Corollary 5.1.6. There exists δ0 > 0 such that the map Tδ : M1
0(x

−, x+) → M1
δ(x

−, x+)
given by Tδ([u]) := [vu] is well defined and injective for all δ ∈ (0, δ0].

Proof. We choose δ0 ≤ ε2C−2
0 such that Theorem 5.1.1 applies. Then let vu = eu(ξ) be the

solution constructed from u ∈ M̃1
0(x

−, x+) and consider a shifted 0-solution ũ = u(·+ σ) ∈
[u]. Then ξ̃ := ξ(· + σ) satisfies ‖ξ̃‖ = ‖ξ‖ ≤ C0

√
δ ≤ ε, Fu(ξ̃) = 0, and the orthogonality

condition to ker(Dũ02⊕π⊥02). Hence vũ = eu(·+σ)(ξ(·+σ)) = vu(·+σ) ∈ [vu], so Tδ([u]) = [vu]
is well defined.

The injectivity of Tδ follows from the fact that M1
0(x

−, x+) consists of isolated points,
so the C0-distance dC0([u], [u′]) > ∆0 is bounded below by some ∆0 > 0 for all [u] 6= [u′].

On the other hand, dC0([ū], Tδ([u]) ≤ C0CS(1 +CQ)
√
δ by (38), (40), and Lemma 5.1.4. So

if we had Tδ([u]) = Tδ([u′]) then dC0([u], [u′]) ≤ dC0([ū], [ū′]) ≤ 2C0CS(1 + CQ)
√
δ . This

implies [u] = [u′] whenever δ ≤ δ0, where we choose δ0 ≤ (2C0CS(1 + CQ))−2∆2
0. �

5.2. Uniform estimates. In this section we establish the uniform linear and nonlinear
estimates that are used in Sections 5.1 and 5.3. We will work in the setup of section 5.1

and fix a solution u ∈ M̃1
0(x

−, x+). For convenience we denote the target spaces by M02 :=
M0×M2 andM0211 := M0×M2×M1×M1 and the symplectic structures by ω02 = (−ω0)⊕ω2

and ω0211 = ω0 ⊕ (−ω2)⊕ (−ω1)⊕ ω1 respectively. The nonlinear equation for v = (v02, v̂),
v02 : R × [0, 1] →M02, v̂ : R × [0, δ] →M0211 is

∂Jv := ∂sv + J(v)∂tv :=
(
∂sv02 + J02(v02)∂tv02 , ∂sv̂ + Ĵ(v̂)∂tv̂

)
.

We will need uniform estimates for the nonlinear operator ξ 7→ ∂Jeu(ξ) on ξ ∈ Γ1,δ(ε) and

the linearized operator Dδ. For that purpose we use the Levi-Civita connection onM = M02

and M = M0211 respectively to identify TuM × TuM ∼= TξTuM for every ξ ∈ TuM . With
this we decompose Te(u, ξ) : TξTuM → TeuξM as

Te(u, ξ)(X, η) = ∂1e(u, ξ)X + deu(ξ)η ∀ξ,X, η ∈ TuM.

We denote the pullback almost complex structure on H 2
1,δ under deu(ξ) by

J(ξ) := (J02(ξ02), Ĵ(ξ̂))

:=
(
(deu02(ξ02))

−1J02(eu02(ξ02))deu02 (ξ02), (deū(ξ̂))
−1Ĵ(eū(ξ̂))deū(ξ̂)

)

for ξ = (ξ02, ξ̂) ∈ Γ1,δ(ε). With this we can express

(52) ∂J(eu(ξ)) = deu(ξ)
(
∇sξ + J(ξ)∇tξ

)
+ ∂1e(u, ξ)∂su+ J(u)∂1e(u, ξ)∂tu

in terms of the nonlinear operator on H2
1,δ,

∇sξ + J(ξ)∇tξ :=
(
∇sξ02 + J02(ξ02)∇tξ02 , ∇sξ̂ + Ĵ(ξ̂)∇tξ̂

)
.
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Note that J(0) = (J02, Ĵ) is the usual almost complex structure, so we can express the
linearized operator (50) as

Dδξ = ∇sξ + J(0)∇tξ +
(
∇ξ02J02(u02)∂tu02 ,

1
2∇ξ̂Ĵ(ū)Ĵ(ū)∂sū

)
.

The following lemma provides uniform elliptic estimates.

Lemma 5.2.1.

(a) There is a constant C1 such that for all δ ∈ (0, 1] and ξ ∈ Γ1,δ∣∣∣∣
∫

{1}×R

ω02(ξ02,∇sξ02)

∣∣∣∣+
∣∣∣∣
∫

{δ}×R

ω0211(ξ̂,∇sξ̂)

∣∣∣∣ ≤ C1

(
‖ξ02|t=1‖H0(R) + ‖ξ̂|t=δ‖H0(R)

)2
,

∣∣∣∣
∫

{1}×R

ω02(∇sξ02,∇2
sξ02)

∣∣∣∣

+

∣∣∣∣
∫

{δ}×R

ω0211(∇sξ̂,∇2
s ξ̂)

∣∣∣∣ ≤ C1

(
‖ξ02|t=1‖H1(R) + ‖ξ̂|t=δ‖H1(R)

)2
.

(b) There is a constant ε > 0 and for every c0 > 0 there is a constant C1 such that for
all δ ∈ (0, 1] and ξ, ζ ∈ H2

1,δ with ‖ζ‖∞ ≤ ε, ‖∇ζ‖∞ ≤ c0

‖ξ‖H1
1,δ

≤ C1

(
‖∇sξ + J(ζ)∇tξ‖H0

1,δ
+ ‖ξ‖H0

1,δ

+

∣∣∣∣
∫

{δ}×R

ω0211(ξ̂,∇sξ̂)

∣∣∣∣
1/2

+

∣∣∣∣
∫

{1}×R

ω02(ξ02,∇sξ02)

∣∣∣∣
1/2)

,

‖ξ‖H2
1,δ

≤ C1

(
‖∇sξ + J(ζ)∇tξ‖H1

1,δ
+ ‖ξ‖H0

1,δ

+

∣∣∣∣
∫

{δ}×R

ω0211(ξ̂,∇sξ̂)

∣∣∣∣
1/2

+

∣∣∣∣
∫

{δ}×R

ω0211(∇sξ̂,∇2
s ξ̂)

∣∣∣∣
1/2

+

∣∣∣∣
∫

{1}×R

ω02(ξ02,∇sξ02)

∣∣∣∣
1/2

+

∣∣∣∣
∫

{1}×R

ω02(∇sξ02,∇2
sξ02)

∣∣∣∣
1/2)

,

‖∇ξ‖L4
1,δ

≤ C1

(
‖ξ‖H2

1,δ
+ ‖∇sξ + J(ζ)∇tξ‖L4

1,δ
+ ‖ξ̂|t=δ‖H1(R)

)
.

(c) There is a constant c1 > 0 such that for all δ ∈ (0, 1] and ξ ∈ Γ1,δ

c1‖ξ‖H2
1,δ

≤ ‖Dδξ‖H1
1,δ

+ ‖ξ‖H0
1,δ

+ ‖ξ̂|t=δ‖H1(R) + ‖ξ02|t=1‖H1(R),

c1‖∇ξ‖L4
1,δ

≤ ‖Dδξ‖H1
1,δ

+ ‖Dδξ‖L4
1,δ

+ ‖ξ‖H0
1,δ

+ ‖ξ̂|t=δ‖H1(R) + ‖ξ02|t=1‖H1(R),

and the same holds with Dδ replaced by (Dδ)∗.

Proof. We prove (a) in general for
∫

R
ω(ξ,∇sξ) and

∫
R
ω(∇sξ,∇2

sξ) with a Lagrangian sec-
tion ξ : R → u∗TL over a path u : R → L. These expressions vanish if L is totally
geodesic. To estimate them in general we pick a smooth family of orthonormal frames
(γi(s))i=1,...,k ∈ u(s)∗TL, then

ξ =
∑

λiγi, ∇sξ =
∑(

∂sλ
iγi + λi∇sγi

)
, ∇2

sξ =
∑(

∂2
sλ

iγi + 2∂sλ
i∇sγi + λi∇2

sγi

)

with λ : R → R
k. By the orthonormality we have |λ(s)| = |ξ(s)|, and using (γ, Jγ) as a

trivialization for the definition of Sobolev norms on u∗TM we obtain ‖λ‖Hs(R) = ‖ξ‖Hs(R).
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We now use the identities ω(γi, γj) = 0 to obtain

∣∣∣∣
∫

R

ω(ξ,∇sξ)

∣∣∣∣ ≤
∣∣∣∣
∫

R

C|ξ(s)||λ(s)|ds
∣∣∣∣ = C‖ξ‖2

L2(R),

∣∣∣∣
∫

R

ω(∇sξ,∇2
sξ)

∣∣∣∣ ≤
∣∣∣∣
∫

R

C
(
|∇sξ||λ| + |∇sξ||∂sλ| + |∂sλ|2 + |λ|2

)∣∣∣∣ ≤ 4C‖ξ‖2
H1(R),

where the constant C only depends on γ (that is on u : R → L) up to third derivatives.
Here we used partial integration

∫

R

∑

i,j

λi∂2
sλ

jω(∇sγi, γj) = −
∫

R

∑

i,j

(
∂sλ

i∂sλ
jω(∇sγi, γj) + λi∂sλ

j∂sω(∇sγi, γj)
)
.

To prove (c) we can replace Dδ by ∇sξ + J(0)∇tξ since the difference of the operators is
bounded in the different components and norms by

∥∥∇ξ02J02(u02)∂tu02

∥∥
H0(R×[0,1])

+
∥∥∇ξ̂Ĵ(ū)J(ū)∂sū

∥∥
H0(R×[0,δ])

≤ C
∥∥ξ
∥∥
H0

1,δ
,

∥∥∇ξ02J02(u02)∂tu02

∥∥
L4(R×[0,1])

≤ C
∥∥∇ξ02J02(u02)∂tu02

∥∥
H1(R×[0,1])

≤ C
∥∥ξ
∥∥
H1

1,δ
,

∥∥∇ξ̂Ĵ(ū)J(ū)∂sū
∥∥
H1(R×[0,δ])

≤ C
∥∥ξ
∥∥
H1

1,δ
,(53)

∥∥∇ξ̂Ĵ(ū)J(ū)∂sū
∥∥
L4(R×[0,δ])

≤ C‖∇Ĵ‖∞‖∂sū‖∞‖ξ̂‖L4(R×[0,δ]) ≤ C
∥∥ξ
∥∥
H2

1,δ
,

where C denotes any uniform constant. The extra terms on the right hand side will fit into
the proof and will be recalled for the relevant estimates. The proof for (Dδ)∗ is completely
analogous. We will use the notation ∇sξ+J(σζ)∇tξ to make partial integration calculations
for the nonlinear (σ = 1) and linear (σ = 0) operator at the same time. In the nonlinear case
the almost complex structure J(ζ) is not skew-adjoint. In order to restore this property
we work with the L2

1,δ(σζ)-metric, which uses the pullback metric gσζ = 〈·, ·〉σζ under

deu02(σζ02) on M02 and deū(σζ) on M0211 respectively. In the linear case σ = 0 nothing
has happened; in the nonlinear case we can pick ε > 0 and hence ‖ζ‖∞ sufficiently small
such that deu(ζ) is C0-close to the identity, and hence the induced L2

1,δ(ζ)-norm is uniformly

equivalent to the standard L2
1,δ-norm. With this in mind we start by calculating for any

ζ, η ∈ H2
1,δ with ‖ζ‖∞ ≤ ε (unless otherwise specified integrals are over two infinite strips

of width δ and 1)

‖∇sη + J(σζ)∇tη‖2
L2

1,δ(σζ)

=

∫ (
|∇sη|2σζ + |∇tη|2σζ + 〈∇sη, J(σζ)∇tη〉σζ − 〈∇tη, J(σζ)∇sη〉σζ

)
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= ‖∇η‖2
L2

1,δ(σζ) −
∫ (

∇sgσζ
(
η, J(σζ)∇tη

)
−∇tgσζ

(
η, J(σζ)∇sη

))

−
∫ (

〈η,
(
∇s

(
J(σζ)∇tη

)
−∇t

(
J(σζ)∇sη

))
〉σζ
)

− lim
S→∞

∫

{s=−S}
〈η, J(σζ)∇tη〉σζ + lim

S→∞

∫

{s=S}
〈η, J(σζ)∇tη〉σζ

+

∫

{0}×R

〈η, J(σζ)∇sη〉σζ −
∫

{1}×R

〈η02, J02(σζ02)∇sη02〉σζ02 −
∫

{δ}×R

〈η̂, Ĵ(σζ̂)∇sη̂〉σζ̂

≥ ‖∇η‖2
L2

1,δ(σζ) −
∫
C
(
(1 + σc0)|η||∇η| + |η|2

)
− Ω02(η02|t=1) − Ω0211(η̂|t=δ),

where we abbreviated

Ω02(η02|t=1) :=

∣∣∣∣
∫

{1}×R

ω02(η02,∇sη02)

∣∣∣∣, Ω0211(η̂|t=δ) :=

∣∣∣∣
∫

{δ}×R

ω0211(η̂,∇sη̂)

∣∣∣∣.

These boundary terms occur on the right hand side of (c) and they will be estimated by (a)
to prove (b). The boundary term at t = 0 vanishes by the diagonal boundary conditions,
and the boundary terms at S → ±∞ vanish since η|{s∈[S,S+1]} → 0 in the H2

1,δ-norm. The
error term can be estimated by∫

C
(
(1 + σc0)|η||∇η| + |η|2

)
≤ C‖η‖2

L2
1,δ(σζ) +

1

2
‖∇η‖2

L2
1,δ(σζ) +

1

2
C2(1 + σc0)

2‖η‖2
L2

1,δ(σζ),

where the highest order term ‖∇η‖ can be absorbed on the right hand side. From now on
C will denote any uniform constant (which is allowed to depend on c0 in the nonlinear case
σ = 1). In summary, the estimates for η = ξ and η = ∇sξ are

1
C ‖∇ξ‖2

L2
1,δ

≤
∥∥∇sξ + J(σξ)∇tξ

∥∥2

L2
1,δ

+ ‖ξ‖2
L2

1,δ
+ Ω02(ξ02|t=1) + Ω0211(ξ̂|t=δ),

1
C ‖∇∇sξ‖2

L2
1,δ

≤
∥∥∇s

(
∇sξ + J(σξ)∇tξ

)∥∥2

L2
1,δ

+ ‖∇ξ‖2
L2

1,δ

+ Ω02(∇sξ02|t=1) + Ω0211(∇sξ̂|t=δ).
This already proves the first estimate in (b). We can moreover use the identity ∇tξ =
J(σζ)∇sξ − J(σζ)(∇sξ + J(σζ)∇tξ) to obtain

‖∇∇tξ‖L2
1,δ

≤ ‖∇∇sξ‖L2
1,δ

+ ‖∇(∇sξ + J(σζ)∇tξ)‖L2
1,δ

+ C‖∇ξ‖L2
1,δ

+ σCc0‖∇ξ‖L2
1,δ
.

In the linear case (c) these estimates combined with (a) and (53) to prove the first estimate:

c1‖ξ‖H2
1,δ

≤
∥∥Dδξ

∥∥
H1

1,δ
+ ‖ξ02|t=1‖H1(R) + ‖ξ̂|t=δ‖H1(R) + ‖ξ‖L2

1,δ

with a uniform constant c1 > 0. In the nonlinear case (b) we obtain similarly

C−1
1 ‖ξ‖H2

1,δ
≤
∥∥∇sξ + J(ζ)∇tξ

∥∥
H1

1,δ
+ ‖ξ‖L2

1,δ
+ Ω02(ξ02|t=1) + Ω0211(ξ̂|t=δ)

+ Ω02(∇sξ02|t=1) + Ω0211(∇sξ̂|t=δ)
with a constant C1 that depends on ‖∇ξ‖∞ ≤ c0.

The L4-estimate for the linear and nonlinear operators will arise by rescaling from the
following basic estimate. Here û : R × [0, 1] → M0211 will be given by û(s, t) = ū(δs) for
any δ ∈ (0, 1]. Then for every η̂ ∈ H1(R × [0, 1], û∗TM0211)

‖η̂‖L4(R×[0,1]) ≤ C0

(
‖η̂|t=1‖L2(R) + ‖∇η̂‖L2(R×[0,1])

)
.
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This simply follows from the Sobolev embedding H 1(R × [0, 1]) ↪→ L4(R × [0, 1]) and

‖η̂‖2
L2(R×[0,1]) ≤

∫ 1

0

∥∥∥∥η̂(·, 1) −
∫ 1

t
∇tη̂(·, τ)dτ

∥∥∥∥
2

L2(R)

dt ≤ 2‖η̂|t=1‖2
L2(R) + 2‖∇tη̂‖2

L2(R×[0,1]).

When applying this to η̂(s, t) := ∇sξ̂(δs, δt) we encounter the following terms:

‖η̂‖2
L4(R×[0,1]) =

(∫

R×[0,1]
|∇sξ̂(δs, δt)|4dsdt

)1/2

= δ−1‖∇sξ̂‖2
L4(R×[0,δ]),

‖η̂|t=1‖2
L2(R) =

∫

R

|∇sξ̂(δs, δ)|2ds = δ−1‖∇sξ̂|t=δ‖2
L2(R),

‖∇η̂‖2
L2(R×[0,1]) =

∫

R×[0,1]
δ2|∇∇sξ̂(δs, δt)|2dsdt = ‖∇∇sξ̂‖2

L2(R×[0,δ]).

Putting this together we find that

‖∇sξ̂‖L4(R×[0,δ]) ≤ C0

(
‖∇sξ̂|t=δ‖L2(R) + ‖∇∇sξ̂‖H2(R×[0,δ])

)
≤ C0

(
‖ξ̂|t=δ‖H1(R) + ‖ξ‖H2

1,δ

)
,

where the estimate for ‖ξ‖H2
1,δ

is already established. The L4-estimate for ∇ξ02 simply

follows from the Sobolev embedding H1(R × [0, 1]) ↪→ L4(R × [0, 1]), and for the last
component we have

‖∇tξ̂‖L4(R×[0,δ]) ≤ ‖∇sξ̂ + Ĵ(σζ̂)∇tξ̂‖L4(R×[0,δ]) + ‖∇sξ̂‖L4(R×[0,δ]).

This finishes the proof of the second estimate, where we allow ‖∇sξ + J(σζ)∇tξ‖L4
1,δ

on

the right hand side, and the constant in the nonlinear case depends on ‖∇ζ‖∞ ≤ c0. In
the linear case the difference to ‖Dδξ‖L4

1,δ
in (53) is bounded by the previously established

estimate. �

The lemma below gives control of the lower-order terms appearing in Lemma 5.2.1 and
in particular will be used to prove surjectivity of the linearized operator.

Lemma 5.2.2. (a) There is a constant ε > 0 and for every c0 > 0 there is a constant
C2 such that for all δ ∈ (0, 1] and ξ, ζ ∈ H2

1,δ with ‖ζ‖∞ ≤ ε, ‖∇ζ‖∞ ≤ c0 we have

‖ξ̂|t=δ‖H1(R) + ‖ξ02|t=1‖H1(R)

≤ C2

(
‖∇sξ02 + J02(ζ02)∇tξ02‖H1(R×[0,1]) +

√
δ‖∇tξ̂‖H1(R×[0,δ]) + ‖π⊥0211 ξ̂|t=δ‖H1(R)

+ ‖ξ02‖L2(R×[0,1]) + ‖(ξ′1 − ξ1)|t=0‖H1(R) + ‖(ξ′02 − ξ02)|t=0‖H1(R)

)
.

(b) There is a constant c2 > 0 such that for all δ ∈ (0, 1] and ξ ∈ Γ1,δ

c2
(
‖ξ̂|t=δ‖H1(R) + ‖ξ02|t=1‖H1(R) + ‖ξ‖H0

1,δ

)
≤ ‖D∗

u02
ξ02‖H1(R×[0,1]) +

√
δ‖∇tξ̂‖H1(R×[0,δ]),

and for all ξ ∈ Γ1,δ ∩K0

c2
(
‖ξ̂|t=δ‖H1(R) + ‖ξ02|t=1‖H1(R) + ‖ξ‖H0

1,δ

)
≤ ‖Du02ξ02‖H1(R×[0,1]) +

√
δ‖∇tξ̂‖H1(R×[0,δ]).

Proof. The constant ε > 0 in case (a) is chosen such that eu02(ζ02) and thus J02(ζ02)
is defined. To prove (a) (and similar for (b)) we assume by contradiction that we have

sequences δν > 0 and ξν , ζν ∈ H2
1,δν such that ‖ξ̂ν |t=δν‖H1(R) + ‖ξν02|t=1‖H1(R) = 1 (in case

(b) add ‖ξν‖H0
1,δ

here), but the right hand sides converges to zero. For technical reasons we
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assume in addition ‖ξν02‖H1(R×[0,1]) ≤ 1, which we will also disprove (i.e. we actually prove a
stronger estimate with this term on the left hand side). First we integrate for all t ∈ [0, δν ]

(54) ‖ξ̂ν |t=t0 − ξ̂ν |t=δν‖H1(R) ≤
∫ δν

0
‖∇tξ̂

ν‖H1(R) ≤
√
δν‖∇tξ̂

ν‖H1(R×[0,δν ]) → 0.

Next, Lemma 5.1.3 implies

‖π⊥02ξν02|t=0‖L2(R) ≤ ‖π⊥02ξ′ν02|t=δν‖L2(R) + ‖ξ′ν02|t=0 − ξ′ν02|t=δν‖L2(R) + ‖(ξ′ν02 − ξν02)|t=0‖L2(R)

≤ C
(
‖π⊥0211 ξ̂ν |t=δν‖L2(R) + ‖ξ̂ν |t=0 − ξ̂ν |t=δν‖L2(R)

+ ‖(ξ′ν1 − ξν1 )|t=0‖L2(R) + ‖(ξ′ν02 − ξν02)|t=0‖L2(R)

)
→ 0,

‖π⊥02ξν02|t=0‖H1(R) ≤ ‖π⊥02ξ′ν02|t=δν‖H1(R) + ‖ξ′ν02|t=0 − ξ′ν02|t=δν‖H1(R) + ‖(ξ′ν02 − ξν02)|t=0‖H1(R)

(55)

≤ C
(
‖π⊥0211 ξ̂ν |t=δν‖H1(R) + ‖ξ̂ν |t=0 − ξ̂ν |t=δν‖H1(R) + ‖(ξ′ν1 − ξν1 )|t=0‖H1

+ ‖(ξ′ν02 − ξν02)|t=0‖H1(R) +
∥∥|∂sū| · |ξ̂ν |t=δν |

∥∥
L2(R)

)
.

In the two cases of (b) we use the boundary conditions for ξν ∈ Γ1,δ here. In all three

cases the hardest step is now to prove that
∥∥|∂sū| · |ξ̂ν |t=δν |

∥∥
L2(R)

→ 0. Here we exploit

the assumption that ‖ξν02‖H1(R×[0,1]) is bounded. This implies a bound on ‖ξν02|t=0‖L2(R).

Now we find a convergent subsequence ξν02 → ξ∞02 ∈ H1(R × [0, 1], u∗02TM02) in the weak
H1-topology, and at the same time ξν02|t=0 → ξ∞02 |t=0 in the L2-norm on every compact set.
(The Sobolev embedding H1(Ω) ↪→ L2(∂Ω)) is compact for compact domains Ω ⊂ R× [0, 1]
with smooth boundary ∂Ω, see e.g. [1, Theorem 6.3].) In case (a) the limit has to be ξ∞02 = 0
since ‖ξ∞02‖L2(R×[0,1]) ≤ lim infν→∞ ‖ξν02‖L2(R×[0,1]) = 0. This also holds in case (b) since the
limit satisfies with D = Du02 or D = D∗

u02

‖Dξ∞02‖L2(R×[0,1]) ≤ lim inf
ν→∞

‖Dξν02‖L2(R×[0,1]) = 0,

‖π⊥02ξ∞02 |t=0‖L2(R) ≤ lim inf
ν→∞

‖π⊥02ξν02|t=0‖L2(R) = 0.

Since u02 is assumed regular, D∗
u02

⊕ π⊥02 is injective, and in the second part of case (b) we

have in addition ξ∞02 ∈ ker(Du02 ⊕ π⊥02)
⊥. So in all three cases we obtain

‖ξν02|t=0‖L2(R) ≤ C and ‖ξν02|t=0‖L2([−T,T ]) → 0 for all T > 0.

The same holds for ξ̂ν |t=δν since we can apply Lemma 5.1.3 on the interval (−T, T ) for any
T ∈ (0,∞] to obtain

‖ξ̂ν |t=δν‖L2 ≤ C
(
‖π02ξ

′ν
02|t=δν‖L2 + ‖π⊥0211ξ̂ν |t=δν‖L2 + ‖(ξ′ν1 − ξν1 )|t=δν‖L2

)

≤ C ′
(
‖ξν02|t=0‖L2 + ‖(ξ′ν02 − ξν02)|t=0‖L2 + ‖ξ̂ν |t=0 − ξ̂ν |t=δν‖L2

+ ‖π⊥0211 ξ̂ν |t=δν‖L2 + ‖(ξ′ν1 − ξν1 )|t=0‖L2

)
.

This together with the fact that sup|s|≥T |∂sū(s)| → 0 as T → ∞ implies that
∥∥|∂sū| ·

|ξ̂ν |t=δν |
∥∥
L2(R)

→ 0 and hence ‖π⊥02ξν02|t=0‖H1(R) → 0 by (55). From this we will move on to

prove that

(56) ‖ξν02‖H3/2(R×[0,1]) → 0.

For that purpose we denote by D any of the three operators ∇s + J02(ζ02)∇t in case (a)
and D∗

u02
or Du02 in case (b). Then we use the fact that in all three cases the operator
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D⊕π⊥02 is Fredholm on the space of sections η that satisfy the boundary conditions η|t=1 ∈
Tu02(L0 × L2), see e.g. [15, Theorem 20.1.2] for compact domains. The corresponding
estimates add up to

‖ξν02‖H3/2(R×[0,1]) ≤ C
(
‖Dξν02‖H1(R×[0,1]) + ‖π⊥02ξν02|t=0‖H1(R) + ‖ξν02‖H0(R×[0,1])

)
.(57)

In the nonlinear case (a) the constant in this estimate depends continuously on J02(ζ02) in
the C1-topology, see e.g. [26, Appendix B]. In this case the above estimate already implies
the claim (56) since we assumed ‖ξν02‖L2 → 0. In the linear cases we need to use the
injectivity of the operators to remove the last term from the right hand side of (57). Since

H3/2(R) ↪→ H0((−T, T )) is compact only for T <∞, we first have to achieve a lower order
term on a compact domain:

Consider the operator Dx± = ∂s − A, where A := −J(x±)∂t (or A := J(x±)∂t in the
case D = D∗

u02
) is self-adjoint and invertible on its constant domain H 1([0, 1], Tx±M02) with

boundary conditions η|t=0 ∈ Tx±L02, η|t=1 ∈ Tx±(L0 ×L2). Then abstract theory (e.g. [34,
Lemma 3.9, Proposition 3.14]) implies the Fredholm property and bijectivity,

‖η‖H1(R×[0,1]) ≤ C‖Dx±η‖H0(R×[0,1]).

In order to apply this estimate to ξν02 we first find an extension ζ ∈ H1(R × [0, 1]) of
ζ|t=0 = π⊥02ξ

ν
02|t=0 such that ‖ζ‖H1 ≤ C‖π⊥02ξν02|t=0‖H1/2 . We moreover fix a cutoff function

h ∈ C∞
0 (R, [0, 1]) with h|{|s|≤T−1} ≡ 0 and h|{|s|≥T} ≡ 1, where we fix T > 1 sufficiently large

such that u02|supp(h) = ex±(ϑ02) for some smooth map ϑ02 : {±s ≥ (T − 1)} → Tx±M02.

Then we can apply the estimate to η := Φx±(ϑ02)
−1
(
h(ξν02 − ζ)

)
, where Φx±(ϑ02) denotes

parallel transport along the path [0, 1] 3 τ 7→ ex±(τϑ02). We obtain, denoting all uniform
constants by C,

‖hξν02‖H1(R×[0,1])

≤ C‖η‖H1(R×[0,1]) + ‖hζ‖H1(R×[0,1])

≤ C
(
‖
(
Dx± −D ◦ Φx±(ϑ02)

)
η‖H0(R×[0,1]) + ‖D(hξν02)‖H0(R×[0,1]) + ‖hζ‖H1(R×[0,1])

)

≤ C
(
‖
(
Dx± −D ◦ Φx±(ϑ02)

)∣∣
{|s|>T−1}

‖ · ‖h(ξν02 − ζ)‖H1(R×[0,1]) + ‖Dξν02‖H0(R×[0,1])

+ ‖ξν02‖H0([−T,T ]×[0,1]) + ‖π⊥02ξν02|t=0‖H1/2(R)

)
.

Here the difference of the operators goes to zero for T → ∞ since u02|{|s|≥T−1} → x± with
all derivatives, see Lemma 3.2.1. Thus for sufficiently large T > 0 we can absorb the first
term into the left hand side and ‖hζ‖H1 ≤ C‖π⊥02ξν02|t=0‖H1/2 . After all this we can finally
replace the last term in (57) by ‖ξν02‖H0([−T,T ]×[0,1]).

Now in the first case of (b) we can deduce (56) from the fact thatDu02⊕π⊥02 is surjective by

assumption and hence D∗
u02

⊕π⊥02 is injective. So the compact embedding H3/2(R× [0, 1]) ↪→
H0([−T, T ]× [0, 1]) allows the removal of the lower order term. Similarly, in the second case
of (b) we can employ the injectivity of the operator on ker(Du02 ⊕ π⊥02)

⊥ 3 ξν02 to deduce
(56).
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Next, (56) and the Sobolev trace theorem provide ‖ξν02|t=0‖H1(R) + ‖ξν02|t=1‖H1(R) → 0,
and again using Lemma 5.1.3 we can deduce that

‖ξ̂ν |t=δν‖H1(R)

≤ C
(
‖π02ξ

′ν
02|t=δν‖H1(R) + ‖π⊥0211 ξ̂ν |t=δν‖H1(R) + ‖(ξ′ν1 − ξν1 )|t=δν‖H1(R)

)

≤ C
(
‖ξν02|t=0‖H1(R) + ‖(ξ′ν02 − ξν02)|t=0‖H1(R) + ‖π⊥0211ξ̂ν |t=δν‖H1(R)

+ ‖ξ̂ν |t=0 − ξ̂ν |t=δν‖H1(R) + ‖(ξ′ν1 − ξν1 )|t=0‖H1(R)

)
→ 0.

Finally, combining this with (54) in case (b) implies

‖ξ̂ν‖L2(R×[0,δν ]) → 0

in contradiction to the assumption. �

Finally, we establish uniform exponential decay for the solutions of Floer’s equation (36)
on the triple strip. For that purpose we introduce the following notation for integration
over finite strips,

∫

[0,1]t[0,δ]
|∂sv(s, t)|2 dt :=

∫ 1

0
|∂sv02(s, t)|2 dt+

∫ δ

0
|∂sv̂(s, t)|2 dt,

and similarly for the C0-norm

‖∂sv‖C0
1,δ([s0,s1])

:= ‖∂sv02‖L∞([s0,s1]×[0,1]) + ‖∂sv̂‖L∞([s0,s1]×[0,δ]),

dC0
1,δ([s0,s1])(v, x

±) := sup
(s,t)∈[s0,s1]×[0,1]

dM02(v02(s, t), x
±),

+ sup
(s,t)∈[s0,s1]×[0,δ]

dM0211 (v̂(s, t), (x
±, x±1 , x

±
1 )).

Lemma 5.2.3. There are constants ~,∆ > 0 and C such that the following holds for every

δ ∈ (0, 1]. If v ∈ M̂δ(x
−, x+) is a smooth solution of (36) satisfying

(58)

∫ ∞

0

∫

[0,1]t[0,δ]
|∂sv(s, t)|2 dtds < ~,

then for every S ≥ 3

dC0
1,δ([S,∞))(v, x

+)2 + ‖∂sv‖2
C0
1,δ([S,∞)) ≤ Ce−∆S

∫ 2

0

∫

[0,1]t[0,δ]
|∂sv(s, t)|2 dtds,

and the analogous statement holds on (−∞, 0] for the convergence to x−.

Proof. Step 1: For every κ > 0 there is an εκ > 0 such that the following holds for all

δ ∈ (0, 1]. If v ∈ M̂δ(x
−, x+) satisfies (58) with ~ = εκ, then

(59) ‖∂sv‖C0
1,δ([ 1

2
,∞)) ≤ κ.

Assume by contradiction that this is wrong. Then there exist κ > 0 and sequences δν ∈ (0, 1]

and vν ∈ M̂δν (x−, x+) such that

(60) lim
ν→∞

∫ ∞

0

∫

[0,1]t[0,δν ]
|∂svν(s, t)|2 dtds = 0,

but the assertion fails. So after a time-shift we can assume that

‖∂svν‖C0
1,δν ([ 1

2
,1]) >

1
2κ.
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The equation ∂Jv
ν = 0 together with (60) implies that dvν |s≥0 → 0 in the L2-norm. If

δν is bounded away from zero, then the standard compactness for holomorphic curves with
Lagrangian boundary conditions implies that dvν |s>0 → 0 in C∞ on every compact set
(for a subsequence), in contradiction to the assumption. In the case δν → 0 the standard
compactness theory still implies dvν02|(0,1]×(0,∞) → 0 in C∞ on every compact set. For v̂

and v02 near the boundary t = 0 we obtain a C1-bound from Lemma 5.3.2. So we obtain
C0-convergence of a subsequence vν02 → x02, v̂

ν → (x02, x1, x1) to constants x02 ∈ L0 × L2,
x1 ∈ M1 such that (x02, x1, x1) ∈ L01 × L12. Now we can use the same compactness
arguments as in the proof of Lemma 5.3.2 (step 2, using a cutoff function only in s) to
deduce that dvν |s∈[ 1

2
,1] → 0 in the C0-norm. This again is a contradiction.

Step 2: There are constants ε1 > 0 and C1 such that the following holds for all δ ∈ (0, 1].

If v ∈ M̂δ(x
−, x+) satisfies (58) with ~ = ε1, then

‖∂sv(1, ·)‖2
C0([0,1]t[0,δ]) ≤ C1

∫

[0,1]t[0,δ]
|∇t∂sv(1, t)|2 dt.

By contradiction we find sequences δν ∈ (0, 1] and vν ∈ M̂δν (x−, x+) that satisfy (60),
but there is no uniform constant C1 with which the estimate holds. Then as in Step 1 we
obtain (for a subsequence) C1-convergence vν → x = (x02, x̂) on [ 12 , 2] × ([0, 1] t [0, δν ]) to
constants x02 ∈ L0 × L2, x1 ∈ M1 with x̂ = (x02, x1, x1) ∈ L01 × L12. By assumption L02

and (L0 ×L2) intersect transversely in x02, and hence we have for all ξ02 : [0, 1] → Tx02M02

with ξ02(1) ∈ Tx02(L0 × L2)

‖ξ02‖C0([0,1]) ≤ C
(
‖∇tξ02‖L2([0,1]) +

∣∣π⊥02ξ02(0)
∣∣).

Now consider in addition ξ̂ : [0, δ] → Tx̂M0211 such that ξ̂(δ) ∈ Tx̂(L01 × L12) and ξ|t=0 =

(ξ02, ξ̂)|t=0 ∈ Tx(∆M0×M2 × ∆1). We integrate for all t ∈ [0, δ]

(61)
∣∣ξ̂(t) − ξ̂(δ)

∣∣ ≤
∫ δ

0
|∇tξ̂(t)|dt ≤

√
δ

(∫ δ

0
|∇tξ̂(t)|2dt

)1/2

.

Combining this with Lemma 5.1.3 and using the boundary conditions we obtain

∣∣π⊥02ξ02(0)
∣∣ ≤

∣∣π⊥0211ξ̂(δ)
∣∣+
∣∣π⊥0211

(
ξ̂(0)− ξ̂(δ)

)∣∣+
∣∣ξ′1(0)− ξ1(0)

∣∣ ≤ C
√
δ

(∫ δ

0
|∇tξ̂(t)|2dt

)1/2

,

and thus

‖ξ02‖2
C0([0,1]) ≤ C2

∫

[0,1]t[0,δ]
|∇tξ|2 dt.

We moreover obtain from Lemma 5.1.3 with uniform constants C,C ′, C ′′

∣∣ξ̂(δ)
∣∣ ≤ C

(∣∣π02ξ
′
02(δ)

∣∣ +
∣∣(ξ′1(δ) − ξ1(δ))

∣∣)

≤ C ′
(∣∣ξ02(0)

∣∣+
∣∣ξ̂(0) − ξ̂(δ)

∣∣) ≤ C ′′

(∫

[0,1]t[0,δ]

∣∣∇t(ξ02, ξ̂)
∣∣2dt

)1/2

.

Together with (61) this implies

‖ξ‖2
C0([0,1]t[0,δ]) ≤ C1

∫

[0,1]t[0,δ]
|∇tξ|2 dt

with some uniform constant C1 for all δ ∈ (0, 1] and all sections ξ over x satisfying the
boundary conditions. Due to the C1-convergence vν → x this estimate continues to hold
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with a uniform constant for sufficiently large ν for sections ξ02 ∈ C1([0, 1], vν02|s=1
∗TM02),

ξ̂ ∈ C1([0, δν ], v̂|∗s=1TM0211) that satisfy the analogous boundary conditions. (We can write

vν |s=1 = ex(ζ
ν) with ‖ζν‖C1 → 0 and use dex(ζ

ν)−1 to map (ξ02, ξ̂) to a section over x.
This preserves the boundary conditions by construction of e.) In particular, we can apply
this new estimate to ξ = ∂sv

ν |s=1, which provides a uniform estimate and thus finishes the
proof by contradiction.

Step 3: There are uniform constants ε2,∆ > 0 and C2 such that the following holds for all

for all δ ∈ (0, 1]. If v ∈ M̂δ(x
−, x+) satisfies (58) with ~ = ε2, then for all s0 ≥ 2

∫

[0,1]t[0,δ]
|∂sv(s0, t)|2dt ≤ C2e

−∆s0

∫ 2

1

∫

[0,1]t[0,δ]
|∂sv(s, t)|2dtds.

Consider the function f : [1,∞) → [0,∞) defined by

f(s) := 1
2

∫

[0,1]t[0,δ]
|∂sv(s, t)|2dt.

We can use the equation ∂Jv =
(
∂sv02 + J02(v02)∂tv02 , ∂sv̂ + Ĵ(v̂)∂tv̂

)
= 0 and the bound

‖∂sv‖∞ ≤ κ from Step 1 to calculate for s ≥ 1

f ′′(s) =

∫

[0,1]t[0,δ]

(
|∇s∂sv|2 + 〈∂sv , ∇2

s∂sv〉
)

=

∫

[0,1]t[0,δ]

(
|J∇t∂sv + (∇∂svJ)∂tv|2 − 〈∂sv , J∇t∇s∂sv〉

)

−
∫

[0,1]t[0,δ]

(
〈∂sv , JR(∂sv, ∂tv)∂sv + 2(∇∂svJ)∇s∂tv + ∇s(∇∂svJ)∂tv〉

)

≥
∫

[0,1]t[0,δ]

(
2|J∇t∂sv|2 + ∂t

(
ω(∂sv,∇s∂sv)

)
− C|∂sv|2

(
|∂sv|2 + |∇t∂sv|

))

≥
(
2 − Cκ

) ∫

[0,1]t[0,δ]
|J∇t∂sv(s, t)|2dt − C ′

(
κ+ κ2

)
‖∂sv(s, ·)‖2

C0([0,1]∪[0,δ]).

The last step uses 2|∂sv|2|∇t∂sv| ≤ κ|∂sv|2 + κ|∇t∂sv|2 and the claim
∣∣∣∣
∫

[0,1]t[0,δ]
∂t
(
ω(∂sv,∇s∂sv)

)∣∣∣∣ ≤ C
(
|∂sv02(1)|3 + |∂sv̂(δ)|3

)
.

To prove the claim we first use the diagonal boundary conditions to obtain
∣∣∣∣
∫

[0,1]t[0,δ]
∂t
(
ω(∂sv,∇s∂sv)

)∣∣∣∣ =
∣∣ω02(∂sv02,∇s∂sv02)|t=1 + ω02(∂sv̂,∇s∂sv̂)|t=δ

∣∣.

Then we use a smooth family of orthonormal frames (γi)i=1,...,k ∈ Γ(T (L0 × L2)) near
w(s) := v02(s, 1) (and similarly for v̂),

∂sw(s) =
∑

λi(s)γi(w(s)), ∇s∂sw(s) =
∑(

∂sλ
i(s)γi(w(s)) + λi(s)∇∂sw(s)γi

)

with λ : R → R
k. By the orthonormality we have |λ(s)| = |∂sw(s)|, and using the identities

ω(γi, γj) = 0 one obtains
∣∣ω(∂sw,∇s∂sw)

∣∣ ≤ C|∂sw|3, where the constant C only depends
on ∇γi. Since L is compact this holds with a uniform constant.
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We can now choose κ > 0 sufficiently small and then fix ~ ≤ min{ε1, εκ} such that Step 1
and Step 2 (applied to time-shifts of v) together with the above calculation yield for all
s ≥ 1

f ′′(s) ≥
∫

[0,1]t[0,δ]
|J∇t∂sv(s, t)|2dt ≥ ((1 + δ)C1)

−1

∫

[0,1]t[0,δ]
|∂sv(s, t)|2dt ≥ ∆2f(s)

with ∆ > 0. Any such nonnegative convex function satisfies for all s ≥ 2 and T ≥ s

f(s) ≤ Ce−∆s

(∫

[1,2]
f(t)dt+

∫

[2T,2T+1]
f(t)dt

)

with a constant C that only depends on ∆. A detailed proof can be found in e.g. [35,

Lemma 3.7] (use the estimate for f̂(s − T − 1), where the function f̂ is shifted by T + 1).
If we let T → ∞ then

∫
[2T,2T+1] f(t)dt → 0 by the finite energy condition

∫∞
0 f(s)ds < ~,

and this proves the claim.

Step 4: There are constants ε3 > 0 and C3 such that the following holds for all δ ∈ (0, 1].

If v ∈ M̂δ(x
−, x+) satisfies (58) with ~ = ε3, then

‖∂sv‖C0
1,δ([1,2]) ≤ C3 ‖∂sv‖L2

1,δ([ 1
2
, 5
2
]) .

By contradiction we find sequences δν ∈ (0, 1] and vν ∈ M̂δν (x−, x+) that satisfy (60),
but the assertion fails, i.e. we cannot find a constant C3 for which the estimate is satisfied.
Then as in Step 1 we obtain (for a subsequence) C1-convergence vν → x = (x02, x̂) on
[12 ,

5
2 ]×([0, 1]t[0, δν ]) to constants x02 ∈ L0×L2, x1 ∈M1 with x̂ = (x02, x1, x1) ∈ L01×L12.

So we can find sections ξν ∈ Γ1,δν over u = x such that vν |s∈[ 1
2
, 5
2
] = ex(ξ

ν). The equation

∂Jv
ν then becomes

∇sξ
ν + J(ξν)∇tξ

ν = 0

and we have the boundary conditions ∇sξ
ν
02|t=1 ∈ Tx02(L0 × L2) and ∇sξ̂

ν |t=δν ∈ Tx̂(L01 ×
L12). We fix two cutoff functions h, h̃ ∈ C∞(R, [0, 1]) with h|[1,2] ≡ 1, h̃|supp h ≡ 1 and

supp(h), supp(h̃) ⊂ (1
2 ,

5
2) and consider the sections hξν , h̃ξν ∈ Γ1,δν . Note that ∂sv

ν =
dex(ξ

ν)∇sξ
ν with dex(ξ

ν) ≈ Id. So for sufficiently large ν we have

‖∂svν‖C0
1,δν ([1,2]) ≤ 2‖h∇sξ

ν‖C0
1,δν

≤ 2CS‖h∇sξ
ν‖H2

1,δν
,

‖∇sξ
ν‖L2

1,δν ([ 1
2
, 5
2
]) ≤ 2‖∂svν‖L2

1,δν ([ 1
2
, 5
2
]),

where we used Lemma 5.1.4. Now we apply Lemma 5.2.1 (b) to the sections ξ = h∇sξ
ν

and ξ = h̃∇sξ
ν (for which the boundary terms vanish since ∇sξ

ν ,∇2
sξ
ν ,∇3

sξ
ν satisfy the

boundary conditions) and ζ = ξν (which satisfy ‖ξν‖∞ → 0 and ‖∇ξν‖∞ → 0) to obtain
with uniform constants C,C ′

‖h∇sξ
ν‖H2

1,δν
≤ C1

(
‖
(
∇s + J(ξν)∇t

)
h∇sξ

ν‖H1
1,δν

+ ‖h∇sξ
ν‖H0

1,δν

)

= C1

(
‖h′∇sξ

ν‖H1
1,δν

+ ‖h∇sξ
ν‖H0

1,δν

)

≤ C‖∇sξ
ν‖H1

1,δν (supp h) ≤ C‖h̃∇sξ
ν‖H1

1,δν

≤ CC1

(
‖
(
∇s + J(ξν)∇t

)
h̃∇sξ

ν‖H0
1,δν

+ ‖h̃∇sξ
ν‖H0

1,δν

)

≤ C ′‖∇sξ
ν‖H0

1,δν ([ 1
2
, 5
2
].
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Now the contradiction follows,

‖∂svν‖C0
1,δν ([1,2]) ≤ 2‖h∇sξ

ν‖H2
1,δν

≤ 2C ′‖∇sξ
ν‖H0

1,δν ([ 1
2
, 5
2
]) ≤ 4C ′‖∂svν‖L2

1,δν ([ 1
2
, 5
2
]).

Step 5: We prove the claim, that is for every s ≥ 3

dC0([0,1]t[0,δ])(v(s, ·), x+)2 + ‖∂sv(s, ·)‖2
C0([0,1]t[0,δ]) ≤ Ce−∆sE(v)

with

E(v) :=

∫ 2

0

∫

[0,1]t[0,δ]
|∂sv(s, t)|2dtds.

We choose ~ = min{ε2, ε3}, then Step 3 and Step 4 (applied to appropriately shifted solu-
tions) combine as follows for all s ≥ 3

‖∂sv‖2
C0
1,δ([s− 1

2
,s+ 1

2
]) ≤ C2

3

∫ s+1

s−1

∫

[0,1]t[0,δ]
|∂sv(s, t)|2dt

≤ C2
3C2

∫ s+1

s−1
e−∆sE(v)ds ≤ C2

3C2∆
−1e∆e−∆sE(v).

This proves the second part of the claim. The estimate on dC0([0,1]t[0,δ])(v(S, ·), x+) now
simply follows by integration: For all S ≥ 3 and t ∈ [0, 1]

dM02(v02(S, t), x
+) ≤

∫ ∞

S
|∂sv02(s, t)|ds

≤ C

∫ ∞

S
e−∆s/2

√
E(v)ds

= 2C∆−1e−∆S/2
√
E(v),

and similarly for v̂. �

5.3. Compactness. The surjectivity of the map Tδ : M1
0(x

−, x+) → M1
δ(x

−, x+), as in-
troduced in the previous section, will be a direct consequence of the following compactness
result. Here we choose ε0 ∈ (0, ε] with ε > 0 from in Theorem 5.1.1. Then v = eu(ξ) with
ξ ∈ Γ1,δ(ε0) ∩K0 implies that [vu] = Tδ([u]) by the definition of Tδ via theorem 5.1.1. We
will denote the time-shift by τ σv(s, t) := v(σ + s, t).

Theorem 5.3.1. Given ε0 > 0 there exists δ0 > 0 such that for every δ ∈ (0, δ0] and v ∈
M̂1

δ(x
−, x+) there exist u ∈ M̃1

0(x
−, x+) and σ ∈ R such that τσv = eu(ξ) with ξ ∈ Γ1,δ∩K0

and ‖ξ‖Γ1,δ
≤ ε0. Moreover, the moduli space M̂1

δ(x
−, x+) is regular for all δ ∈ (0, δ0] in

the sense that the linearized operator Dv is surjective for every v ∈ M̂1
δ(x

−, x+).

Proof. We assume by contradiction that there is an ε0 > 0, a sequence δν → 0, and solutions

vν = (vν02, v̂
ν) ∈ M̂1

δν (x−, x+) for which the assertion of the theorem fails. The energy
A(vν) = A < ∞ is fixed by the energy-index relation in Remark 4.2.3 (applied to the

corresponding triple strip solutions in M̃1
δ̄ν (x−, x+)). We can exclude bubbling by the

following argument based on Lemma 5.3.2 below:
If |dvν02| is unbounded near a point z ∈ R × (0, 1], then the standard rescaling method

gives rise to a nontrivial holomorphic sphere or disk in (M0, L0), or in (M2, L2), or in both.
Thus some fixed amount of energy ~ > 0 would have to concentrate near z. The same energy
quantization holds for blowup of dv̂ or dv02|t=0 by Lemma 5.3.2. So the energy densities |dvν |
can only blow up at finitely many points. On the complement the same compactness proof
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as in the next paragraph provides a C0
loc convergent subsequence vν02 → u02, where the limit

corresponds to a solution u = (u0, u2) ∈ M̃0(x
−, x+) with finitely many singularities and

energy A(u) < A(vν). These can be removed by the standard proofs for pseudoholomorphic
curves with Lagrangian boundary condition [26, Theorem 4.1.2], so we would obtain a

solution ũ ∈ M̃0(x
−, x+) of energy A(ũ) < A(vν). Its index I(ũ) < I(vν) = 1 would be

negative due to the energy-index relation and the fact that the index can only change by
multiples of 2, see Remark 4.2.3. This poses a contradiction to the assumption of regularity

for the moduli space M̃0(x
−, x+).

So we excluded bubbling and thus from now on assume that |dvν | ≤ C0 is uniformly
bounded. Then we have dC0

(
vν02|t=δν , L02

)
→ 0 since as in Lemma 5.1.3 it is bounded

by dC0

(
v′ν1 |t=δν , vν1 |t=δν

)
≤ dC0

(
v̂ν |t=δν , v̂ν |t=0

)
≤ C0δ

ν . So we can fix p > 2 and find a

subsequence and map u02 ∈ C0 ∩ W 1,p
loc (R × [0, 1],M0 ×M2) such that vν02 → u02 in the

C0-topology and the weak W 1,p-topology on every compact subset of R × [0, 1]. The limit

u02 corresponds to a solution (u0, u2) ∈ M̃1
0(x

−, x+). We also conclude that v̂ → ū =
(u02|t=0, ū1, ū1) in C0([−T, T ] × [0, δν ]) for all T > 0, where ū1 is determined uniquely
by (u02|t=0, ū1, ū1) ∈ L01 × L12. Indeed, v̂ν |t=0 = (vν02, v

ν
1 , v

ν
1 )|t=0 satisfies dC0(v̂ν |t=0, u02 ×

∆1) → 0 as well as dC0(v̂ν |t=0, L01×L12) ≤ dC0(v̂ν |t=0, v̂
ν |t=δν ) → 0, so v1|t=0 must converge

to ū1 on compact sets, and the convergence for t0 ∈ [0, δν ] follows from dC0(v̂ν |t=0, v̂
ν |t=t0) ≤

C0δ
ν → 0. In summary we have vν → u := (u02, ū) in the C0-topology on every set {|s| ≤ T}

for fixed T . In the following, we will strengthen this convergence using uniform nonlinear
estimates and exponential decay, to find sections ξν ∈ Γ1,δν (ε0) such that vν = eu(ξ

ν) and
Dvν is surjective in contradiction to the assumption.

Let us first note that the limit u here cannot be a broken trajectory between critical
points x−, y1, . . . , y`, x

+ since each of the trajectories would lie in a regular moduli space of
index at least 1. Their total energy would then exceed that of vν due to the energy-index
relation in Remark 4.2.3. We also cannot have A(u) < A(vν) since, by the same relation,
that would lead to a negative index of u. Hence the energies A(u) = A(vν) and thus the
indices I(u) = I(vν) = 1 agree. In the next step we strengthen the local convergence:

For fixed T > 0 and sufficiently large ν ≥ ν0 we can write vν |{|s|≤T} = eu(ξ
ν) with a

section ξν ∈ Γ1,δν (extended smoothly to {|s| > T}). The extension of ξν can be chosen
such that ‖ξν‖∞ → 0 and supν ‖∇ξν‖∞ < ∞ follows from the C0-convergence and C1-
boundedness of vν |{|s|≤T}. For the latter note that ∇ξν = deu(ξ

ν)−1∇vν − ∂1e(u, ξ
ν)∇u,

where ∇vν is uniformly bounded, and deu(ξ
ν) → Id as |ξν | → 0. This puts us into the posi-

tion where Lemma 5.2.1 applies with ζ = ξν . We fix a cutoff function h ∈ C∞
0 ([−T, T ], [0, 1])

with h|[−T+1,T−1] ≡ 1, then

‖hξν‖H1
1,δ

≤ C1

(
‖
(
∇s + J(ξν)∇t

)
hξν‖H0

1,δν
+ ‖hξν‖H0

1,δν

+ ‖hξ̂ν |t=δν‖H0(R) + ‖hξν02|t=1‖H0(R)

)
.

Now we can use (52), ∂Jv
ν = 0, ∂J02u02 = 0, and ∂tū = 0 to obtain

∥∥h
(
∇s + Ĵ(ξ̂ν)∇t

)
ξ̂ν
∥∥
L2(R×[0,δν ])

=
∥∥h · deū(ξ̂ν)−1

(
∂1e(ū, ξ̂

ν)∂sū
)∥∥

L2([−T,T ]×[0,δν ])

≤ C‖∂sū‖L2([−T,T ]×[0,δν ]) ≤ C
√
δν‖∂sū‖L2([−T,T ]),
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and furthermore, using the fact that ∂1e(u02, 0) = Id commutes with J(u02),
∥∥h
(
∇s + J02(ξ

ν
02)∇t

)
ξν02
∥∥
L2(R×[0,1])

=
∥∥h · deu02(ξ

ν
02)

−1
(
∂1e(u02, ξ

ν
02)J(u02)∂tu02 − J02(u02)∂1e(u02, ξ

ν
02)∂tu02

)∥∥
L2(R×[0,1])

≤ C‖ξν02‖L2([−T,T ]×[0,1]).

Hence we have

‖ξν‖H1
1,δν ({|s|≤T−1}) ≤ C

(√
δν + ‖ξν‖H0

1,δν ({|s|≤T}) + ‖hξ̂ν |t=δν‖H0(R) + ‖hξν02|t=1‖H0(R)

)
,

which converges to zero, and thus vν02 → u02 in the H1-norm on every compact set. Now we
can verify the assumptions of Lemma 5.2.3 (with the constant ~ > 0) and achieve uniform
exponential decay: Pick T > 0 such that

∫
[−T,T ]×[0,1] |∂su02|2 ≥ A(u)− 1

2~ and pick ν0 such

that for all ν ≥ ν0 we have ‖∂su02‖2
L2([−T,T ]×[0,1]) − ‖∂svν02‖2

L2([−T,T ]×[0,1]) ≤ 1
2~ and thus

∫

{|s|>T}

(∫

[0,1]
|∂svν02|2 +

∫

[0,δν ]
|∂sv̂|2

)
≤ A(vν) + 1

2~ −A(u) + 1
2~ = ~.

Now the exponential decay Lemma 5.2.3 combined with the local C0-convergence implies
that

dC0(vν02, u02) + dC0(v̂ν , ū) → 0

uniformly for all s, t. Thus for sufficiently large ν we can write vν = eu(ξ
ν) with ξν ∈ H2

1,δν

and ‖ξν‖∞ → 0. In fact, the uniform exponential decay implies global convergence,

‖ξν‖∞ → 0, ‖ξν‖Lp
1,δ

→ 0 ∀p ≥ 1, ‖∇ξν‖∞ ≤ c0 <∞.

This puts us into the position where Lemma 5.2.1 and 5.2.2 apply with ζ = ξν ,

‖ξν‖H2
1,δν

+ ‖∇ξν‖L4
1,δν

≤ C1

(
‖∇sξ

ν + J(ξν)∇tξ
ν‖H1

1,δν
+ ‖∇sξ

ν + J(ξν)∇tξ
ν‖L4

1,δν

+ ‖ξν‖H0
1,δν

+ ‖ξ̂ν |t=δν‖H1(R) + ‖ξν02|t=1‖H1(R)

)

≤ C1(1 + C2)
(
‖∇sξ

ν + J(ξν)∇tξ
ν‖H1

1,δν
+ ‖∇sξ

ν + J(ξν)∇tξ
ν‖L4

1,δν

+ ‖ξν‖H0
1,δν

+
√
δν‖∇tξ̂

ν‖H1(R×[0,δν ])

)
.

The terms in the last line converge to zero or can be absorbed into the left hand side for
δν sufficiently small. We claim that the penultimate line also converges to zero and we
thus obtain the convergence ‖ξν‖Γ1,δ

→ 0. To check this we recall from (52) that ∂Jv
ν = 0

implies

(62) ∇sξ
ν + J(ξν)∇tξ

ν = −deu(ξν)−1
(
∂1e(u, ξ

ν)∂su+ J(u)∂1e(u, ξ
ν)∂tu

)
.

Recall that

(63) ∂1e(u, 0) = IdTuM , ∂2e(u, 0) = deu(0) = IdTuM .



76 KATRIN WEHRHEIM AND CHRIS T. WOODWARD

So in zeroth order we have, using the equations ∂tū = 0 and ∂su02 = −J02(u02)∂tu02,
∣∣∇sξ̂

ν + Ĵ(ξ̂ν)∇tξ̂
ν
∣∣ ≤

∣∣deū(ξ̂ν)−1
(
∂1e(ū, ξ̂

ν)∂sū
)∣∣ ≤ C|∂sū|,∣∣∇sξ

ν
02 + J02(ξ

ν
02)∇tξ

ν
02

∣∣ ≤
∣∣deu02(ξ

ν
02)

−1
(
∂1e(u02, ξ

ν
02)J02(u02)

− J02(u02)∂1e(u02, ξ
ν
02)
)
∂tu02

∣∣ ≤ C|ξν02|,
and thus

‖∇sξ
ν + J(ξν)∇tξ

ν‖L2
1,δν

+ ‖∇sξ
ν + J(ξν)∇tξ

ν‖L4
1,δν

≤ C
(
‖ξν02‖L2(R×[0,1]) + ‖ξν02‖L4(R×[0,1]) + (δν)1/2‖∂sū‖L2(R) + (δν)1/4‖∂sū‖L4(R)

)
→ 0.

For the first derivative we calculate from (62), denoting all uniform constants by C,
∣∣∇
(
∇sξ̂

ν + Ĵ(ξ̂ν)∇tξ̂
ν
)∣∣ ≤ C(1 + |∇ξ̂ν |)

∣∣∂1e(ū, ξ̂
ν)∂sū

∣∣+ C
∣∣∇
(
∂1e(ū, ξ̂

ν)∂sū
)∣∣

≤ C
(
1 + |∇ξ̂ν |

)(
|∂sū| + |∇s∂sū|

)
,

and (in between dropping the subscript from ξν02)
∣∣∇
(
∇sξ

ν
02 + J02(ξ

ν
02)∇tξ

ν
02

)∣∣ ≤ C(1 + |∇ξν |)
∣∣∂1e(u, ξ

ν)J(u)∂tu− J(u)∂1e(u, ξ
ν)∂tu

∣∣
+ C

∣∣∇
(
∂1e(u, ξ

ν)J(u) − J(u)∂1e(u, ξ
ν)
)∣∣ · |∂tu|

+ C
∣∣∂1e(u, ξ

ν)J(u) − J(u)∂1e(u, ξ
ν)
∣∣ · |∇∂tu|

≤ C|ξν02|
(
1 + |∇ξν02|

)
.

Here the estimate for the second summand follows from (63) and the identity

∇s(∂1e(u, ξ)X) = ∂1e(u, ξ)∇sX + (∇(∂su,∇sξ)∂1e)(u, ξ)X

(and similarly for ∇t(∂1e(u, ξ)X)), where we have
(
∇(∂su,∇sξ)∂1e

)
(u, 0) = 0 since

(
∇(Y,0)∂1e

)
(u, 0) = ∇Y IdTuM = 0

and, calculating in local normal coordinates with an extension Ỹ ∈ Γ(TM) of Y ∈ TuM
that is covariantly constant along τ 7→ expu(τX),

(
∇(0,Y )∂1e

)
(u, 0)X = ∂σ|σ=0∂τ |τ=0e(expu(τX), σY ) = ∂τ |τ=0Ỹ (expu(τX)) = 0.

Now the uniform estimate ‖∇ξν‖∞ ≤ c0 and the exponential decay of ū = ū(s) imply
∥∥∇
(
∇sξ

ν + J(ξν)∇tξ
ν
)∥∥

L2
1,δν

≤ C(1 + c0)
(
‖ξν02‖L2(R×[0,1]) + (δν)1/2‖∂sū‖H1(R)

)
→ 0.

This proves

‖ξν‖Γ1,δν → 0.

It remains to find a time-shift such that τ σvν = eu(ξ
ν(σ)) with some ξν(σ) ∈ K0 but still

‖ξν(σ)‖Γ1,δν ≤ ε0. In order to find this shift we write τ σvν = eu(ξ
ν(σ)) with

(64) ξν(σ) :=
(
e−1
u ◦ τσ ◦ eu

)
(ξν) ∈ Γ1,δν .

This will satisfy

‖ξν(σ)‖Γ1,δν ≤ C
(
‖ξν‖Γ1,δν + |σ|‖du‖Γ1,δν

)
,
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so it is well defined whenever |σ| ≤ σ0, where we fixed σ0 = 1
2ε0C

−1‖du‖−1
Γ1,δν

such that

‖ξν(σ)‖Γ1,δν ≤ ε0 is ensured for sufficiently large ν ≥ ν0. The L2-estimate on ξν(σ) can be
seen from the pointwise estimate

∣∣e−1
u τσeu(ξ)

∣∣ ≤
∣∣e−1
u τσeu(ξ) − e−1

u τσeu(0)
∣∣+
∣∣e−1
u τσu− e−1

u u
∣∣

≤ C
(
d
(
τσeu(ξ), τ

σeu(0)
)

+ d
(
τσu, u

))

≤ C
(∣∣τσξ

∣∣+ σ|∂su|
)
.

Here C is a continuity constant for e−1
u . The higher derivatives of ξ(σ) = e−1

u τσeu(ξ) are
estimated similarly. Now consider the function

Θν(σ) := 〈ξν02(σ), ∂su02〉L2 .

It satisfies
|Θν(0)| ≤ ‖∂su‖L2

1,δν
‖ξν‖L2

1,δν
→ 0

and (dropping the 02-subscript) we obtain from (64)
∣∣∣ ∂∂σΘν(σ) − ‖∂su‖2

L2

∣∣∣

=
∣∣∣〈
(
deu(ξ

ν(σ))−1τσ
(
∂1e(u, ξ

ν)∂su+ deu(ξ
ν)∂sξ

ν
)
− τσ∂su

)
, ∂su〉L2

+ 〈
(
τσ∂su− ∂su

)
, ∂su〉L2

∣∣∣
≤ C

(
‖ξν‖H1‖∂su‖L2 + ‖ξν‖∞‖∂su‖2

L2 + |σ|‖∇s∂su‖L2‖∂su‖L2

)
.

The latter is an arbitrarily small error for large ν and small σ. Hence we will find solutions
σν ∼ −Θν(0)/‖∂su02‖2

L2 ∈ [−σ0, σ0] of Θν(σν) = 0. With these we have τσ
ν
vν = eu(ξ

ν(σ)),

where ξν ∈ K0 =
{
ξ ∈ Γ1,δ

∣∣〈ξ02, ∂su02〉L2 = 0
}

and ‖ξν(σ)‖Γ1,δν ≤ ε0. So with this small
time-shift on vν we obtain a contradiction to the assumption that T ν

δ is not surjective.
Finally, to prove the transversality we need to check that Dvν = Deu(ξν) is surjective.

(The same then holds for the time shifts τ σ
ν
vν .) This follows from the quadratic estimate

in Lemma 5.1.5 : Let Q : Ω1,δν → Γ1,δν be the right inverse of Dδ = dFu(0), then

‖Φu(ξ
ν)−1Deu(ξν)Eu(ξ

ν)Q− Id‖ ≤ ‖Φu(ξ
ν)−1Deu(ξν)Eu(ξ

ν) − dFu(0)‖ · ‖Q‖
≤ 2C2‖Q‖‖ξν‖Γ1,δν ,

where ‖Q‖ < ∞ by (51) and ‖ξν‖Γ1,δν → 0. This shows that Φu(ξ
ν)−1Deu(ξν)Eu(ξ

ν)Q

and hence also the operator Φu(ξ
ν)−1Deu(ξν)Eu(ξ

ν) has a right inverse for all sufficiently
large ν ≥ ν0. Here the parallel transport Φu(ξ

ν) is an isomorphism on the target and
Eu(ξ

ν) identifies Γ1,δ with the domain of Deu(ξν). For the latter see the discussion before
Lemma 5.1.5 and recall that Eu(0) = Id. So we have established that Dvν is surjective, and
this finishes the proof. �

Lemma 5.3.2. There exists a universal constant ~ > 0 such that the following holds for

any sequence of Floer trajectories vν ∈ M̂δν (x+, x−) with δν → 0. If for some s ∈ R

lim inf
ν→∞

(
‖dvν02‖L∞(Bε(s,0)) + ‖dv̂ν‖L∞(Bε(s,0))

)
= ∞ ∀ε > 0,

then there exists a sequence εν → 0 such that

lim inf
ν→∞

(∫

Bεν (s,0)
|dvν02|2 +

∫

Bεν (s,0)
|dv̂ν |2

)
≥ ~.
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Here Bε(s, 0) is the ε-ball in R × [0, 1] or R × [0, δν ] respectively.

Careful analysis of the blowup behavior and appropriate rescaling will lead to convergence
to one of the following limit objects:

• a sphere bubble in M0, M1, or M2 ,
• a disk bubble in (M0 ×M1, L01) or (M1 ×M2, L12),
• a disk bubble in (M0 ×M2, L01 ◦ L12),
• a figure eight bubble, that is a triple of J -holomorphic maps

v0 : R × (−∞,−1] →M0, v1 : R × [−1, 1] →M1, v2 : R × [1,∞) →M2

such that

(v0(τ,−1), v1(τ,−1)) ∈ L01, (v1(τ, 1), v2(τ, 1)) ∈ L12.

Viewed from z = ∞ the lines Im(z) = ±1 appear as a figure eight, as in Figure 12.
We conjecture that the maps (v0, v1, v2) can be extended continuously to S2 by a point
(v0(∞), v1(∞), v2(∞)) that lies in both L01 ×M2 and M0 × L12.

M1

M2
M0

L 01

L 12 1/z

M1

M2

M0

L 01

L 12

Figure 12. Figure Eight bubble

However, we cannot in general prove this removal of singularities at z = ∞ for figure
eight bubbles. Instead, as in [47] we prove energy quantization without giving a geometric
description of the bubble.

Proof. For notational convenience we introduce the noncontinuous function |dv| : R ×
[0, 1] → [0,∞) given by |dv(s, t)|2 = |dv02(s, t)|2 + |dv̂(s, t)|2 for t ∈ [0, δ] and |dv(s, t)| =
|dv02(s, t)| for t ∈ (δ, 1].

Suppose the lemma is false, that is, for every k ∈ N there exists a sequence vk,ν ∈
M̂δk,ν (x+, x−) with δk,ν → 0 such that (after time shift to s = 0) Rν

k := |dvk,ν(sνk, tνk)| → ∞
for some (sνk, t

ν
k) → (0, 0), but

lim inf
ν→∞

∫

Bεν (0)
|dvν,k|2 ≤ 1

k
.

for every sequence εν → 0. In particular, this will hold for a fixed sequence ενk → 0 that
satisfies in addition ενk ≥ δνk , (sνk, t

ν
k) ∈ B 1

4
ενk

(0) and ενkR
ν
k → ∞. We can then find diagonal

sequences vk ∈ M̂δk(x+, x−) with δk → 0, and εk → 0, (sk, tk) ∈ B 1
4
εk

(0) such that

εkRk := εk|dvk(sk, tk)| → ∞ and

(65)

∫

Bεk
(0)

|dvk|2 → 0.
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Next, we use Lemma 5.3.3 to refine the choice of the blowup points (sk, tk). For that purpose

we consider the spaces X02 = R× [0, 1], X̂ = R× [0, δk], and X = R× [0, 1], with the obvious

inclusion π : X02 ∪ X̂ → X. Using the function f = |dvk02| on X02 and f = |dv̂k| on X̂ one
can then vary the point π(x) = (sk, tk) ∈ R × [0, 1] by 2ρ = 1

4εk to find (sk, tk) ∈ B 1
2
εk

(0)

and ε′k ≤ 1
8εk, such that ε′kRk := ε′k|dvk(sk, tk)| → ∞ and |dvk| ≤ 4Rk on Bε′k(sk, tk). Here

(65) continues to hold on Bεk(0) ⊃ Bε′k(sk,tk).

Now in a first step we will prove that figure eight bubbles (arising from rescaling in the
case δkRk → ∆ ∈ (0,∞)) have a minimal energy (possibly depending on ∆ > 0.) More
precisely, we claim that (65) implies

(66) tkRk → 0, and δkRk → 0.

In a second step we will then see that this gives rise to a disk bubble in (M0×M2, L01◦L12).

Step 1:We prove (66).
First consider the case |dvk02(sk, tk)| ≥ 1

2 |dvk(sk, tk)| and tk ≥ 1
2δk. Then for all sufficiently

large k we can apply the mean value inequality [26, Lemma 4.3.1] to |dvk02| on the ball
Brk(sk, tk) ⊂ R × (0, 1) ∩Bεk(0) with rk := min{tk, ε′k},

1
4(rkRk)

2 ≤ r2k|dvk02(sk, tk)|2 ≤ c

∫

Brk
(sk,tk)

|dvk02|2 → 0.

Here we cannot have rk = ε′k since ε′kRk → ∞, so we have rk = tk and thus 1
2δkRk ≤

tkRk → 0 as claimed.
In the case |dv̂k(sk, tk)| ≥ 1

2 |dvk(sk, tk)| and δk ≥ tk ≥ 1
2δk we can apply the mean

value inequality [47, Theorem 1.3, Lemma A.1] to |dv̂k| with boundary condition v̂k|t=δk ∈
L01 × L12 on the partial ball Brk(sk,tk) ⊂ R × (0, δk ] ∩Bεk(0) for rk := min{ 1

2δk, ε
′
k},

1
4(rkRk)

2 ≤ r2k|dv̂k(sk, tk)|2 ≤ c

∫

Brk
(sk,tk)

|dv̂k|2 → 0.

As before we cannot have rk = ε′k since ε′kRk → ∞, so we have rk = 1
2δk and thus tkRk ≤

δkRk → 0 as claimed.
In the remaining case tk ≤ 1

2δk we consider the holomorphic curve

wk := (vk02, v̂
k) : R × [0, δk] →M0 ×M2 ×M0 ×M2 ×M1 ×M1,

which satisfies the Lagrangian boundary condition wk|t=0 ∈ ∆0 × ∆2 × ∆1. By the above
we have |dwk(sk, tk)| ≥ Rk → ∞ and

∫
Bεk

(0) |dwk|2 → 0. So for all sufficiently large k

we can apply the mean value inequality [47, Theorem 1.3, Lemma A.1] on the partial ball
Brk(sk,tk) ⊂ R × [0, δk) ∩Bεk(0) for rk := min{ 1

2δk, ε
′
k},

(rkRk)
2 ≤ r2k|dwk(sk, tk)|2 ≤ c

∫

Brk
(sk,tk)

|dwk|2 → 0.

Again we cannot have rk = ε′k since ε′kRk → ∞, so we have rk = 1
2δk and thus 2tkRk ≤

δkRk → 0 as claimed.

Step 2: We prove the lemma.
We consider the rescaled maps wk = (wk02, ŵ

k), where wk02 : BεkRk
(0)∩H

2 →M0 ×M2 is
defined on half balls of radius εkRk → ∞ in the half space H

2 := R× [0,∞) by wk02(s, t) :=
vk02(sk + s/Rk, t/Rk), and ŵk : BεkRk

(0)∩ (R× [0, δkRk]) →M0 ×M2 ×M1 ×M1 is defined
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by ŵk(s, t) := v̂k(sk+s/Rk, t/Rk) on balls of radius εkRk intersected with the strip of width
δkRk → 0.

This rescaling preserves the nontriviality |dwk(0, tkRk)| ≥ 1, but on both domains |dwk|
is uniformly bounded. Hence we can find a subsequence of the wk02 that converges in
the C0-topology on the unit half ball D1 := B1(0) ∩ H

2. The (scaling invariant) energy∫
BεkRk

(0) |dwk02|2 converges to zero by (65), so the limit has to be constant. In fact, we

have wk02 → x02 ∈ L02 since the boundary values wk02|t=0 converge to L01 ◦ L12 = L02 in
C0([−1, 1]). To see the latter use the transversality of the Lagrangians as in Lemma 5.1.3
and integrate the bound on |∂tŵk| to obtain

d
(
ŵk(s, 0), ŵk(s, δk)

)
≤
∫ δk

0
|∂tŵk(s, t)|dt ≤ δk2Rk → 0.

This also proves that ŵk → x1 in C0([−1, 1] × [0, δkRk]), where x1 ∈ M1 is uniquely deter-
mined by x̄ := (x02, x1, x1) ∈ L01 × L12. The maps wk02 are J̄02-holomorphic, so by elliptic
regularity the convergence wk02 → x02 is in the C∞-topology on every compact subset of
H

2 \ ∂H
2. However, in order to obtain a contradiction to the fact that |dwk(0, tkRk)| ≥ 1

with tkRk → 0 we need to establish C1-convergence on D1 up to the boundary.
We begin by noting that due to the C0-convergence we can express wk = ex(ξ

k) in terms

of sections ξk = (ξk02, ξ̂
k) ∈ H2(D1, x

∗
02T (M0 ×M2))×H2([0, 1] × [0, δkRk], x̄

∗T (M0 ×M2 ×
M1 ×M1)) using the exponential map centered at x = (x02, x̄). These sections satisfy the

diagonal and Lagrangian boundary conditions ξk|t=0 ∈ Tx(∆0 × ∆2 × ∆1) and ξ̂k|t=δkRk
∈

Tx̄(L01 × L12), the C0-convergence ‖ξk‖∞ → 0, and a uniform bound ‖∇ξk‖∞ ≤ c0. Since
∂Jw

k = 0 and ∇x = 0 we obtain from (52)

∇sξ
k + J(ξk)∇tξ

k = 0.

Now dwk = dex(ξ
k)∇sξ

kds+dex(ξ
k)J(ξk)∇sξ

kdt, so it suffices to prove the C0-convergence

of ∇sξ
k near 0. For that purpose we multiply the sections by cutoff functions h = (h02, ĥ)

with h02 : R × [0, 1] → [0, 1] supported in D1, ĥ : R → [0, 1] supported in [−1, 1], and both

equal to 1 near 0. Then we obtain sections on the multistrip hξk := (h02ξ
k
02, ĥξ̂

k) ∈ Γ1,δkRk

that also satisfy the boundary condition h02ξ
k
02|t=1 = 0. These satisfy a uniform bound

sup
k

(
‖∇s(hξ

k) + J(ξk)∇t(hξ
k)‖H1

1,δkRk

+ ‖hξk‖H0
1,δkRk

)
≤ sup

k
C‖ξk‖H1

1,δkRk
(supp(h)) <∞

due to the bounds on ‖ξk‖∞ and ‖∇ξk‖∞ and the compact support of h. From this
Lemma 5.2.1 (b) provides a uniform bound

sup
k

‖hξk‖H2
1,δkRk

≤ CΓ <∞.

Indeed, the boundary terms vanish since the constant boundary conditions directly transfer
to the derivatives, ∇sξ

k
02|t=1,∇2

sξ
k
02|t=1 ∈ Tx02(L0 × L2) and ∇sξ̂

k|t=δkRk
,∇2

s ξ̂
k|t=δkRk

∈
Tx̂(L01 × L12).

We now fix a pair of cutoff functions h′ with support in h−1(1) and still equal to 1 near
0. Then we apply Lemma 5.2.1 (b) to h′∇sξ

k, again with vanishing boundary terms, to
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obtain

sup
k

‖h′∇sξ
k‖H2

1,δkRk

≤ sup
k
C1

(∥∥(∇s + J(ξk)∇t

)
h′∇sξ

k
∥∥
H1

1,δkRk

+ ‖h′∇sξ
k‖H0

1,δkRk

)

≤ sup
k
C(1 + c0)‖hξk‖H2

1,δkRk

<∞.

We can pick the cutoff functions such that h′02|D1/2
≡ 1 on the half ball D1/2 ⊂ H

2 and

ĥ|[− 1
2
, 1
2
] ≡ 1. Then the compact Sobolev embedding H2(D1/2) ↪→ C0(D1/2) provides C0-

convergence of a subsequence ∇sξ
k
02. We already know that the limit is 0, so we obtain

∇sξ
k
02 → 0 and ∂sw

k
02 → 0 in C0(D1/2). It remains to establish ‖∇sξ̂

k‖C0([− 1
2
, 1
2
]×[0,δkRk]) → 0

and thus ‖∂sŵk‖C0([− 1
2
, 1
2
]×[0,δkRk]) → 0 in contradiction to |dwk(0, tkRk)| ≥ 1 with tkRk → 0.

To see this we follow the argument in Lemma 5.1.4. Using the standard Sobolev embedding
H1([−1

2 ,
1
2 ]) ↪→ C0([−1

2 ,
1
2 ]) we obtain for all t0 ∈ [0, δkRk]

1
C ‖∇sξ̂

k|t=t0 −∇sξ̂
k|t=δkRk

‖2
C0([− 1

2
, 1
2
])
≤ ‖∇sξ̂

k|t=t0 −∇sξ̂
k|t=δkRk

‖2
H1([− 1

2
, 1
2
])

≤ δkRk

∫ δkRk

0
‖∇t∇sξ̂

k‖2
H1([− 1

2
, 1
2
])

(67)

≤ δkRk‖∇sξ̂
k‖2
H2([− 1

2
, 1
2
]×[0,δkRk])

→ 0.

From the above we moreover have ‖∇sξ
′k
02|t=0‖C0([− 1

2
, 1
2
]) = ‖∇sξ

k
02|t=0‖C0([− 1

2
, 1
2
]) → 0. Now

using Lemma 5.1.3 and the boundary conditions, in particular (ξk1 − ξ′k1 )|t=0 = 0, we obtain

‖∇sξ̂
k|t=δkRk

‖C0([− 1
2
, 1
2
])

≤ C
(
‖π02(∇sξ̂

k)|t=δkRk
‖C0([− 1

2
, 1
2
]) + ‖∇s(ξ

k
1 − ξ′k1 )|t=δkRk

‖C0([− 1
2
, 1
2
])

)

≤ C
(
‖∇sξ

′k
02|t=0‖C0([− 1

2
, 1
2
]) + 3‖∇sξ̂

k|t=δkRk
−∇sξ̂

k|t=0‖C0([− 1
2
, 1
2
])

)
→ 0.

Combining ‖∇sξ̂
k|t=δkRk

‖C0([− 1
2
, 1
2
]) → 0 with (67) then proves ‖∇sξ̂

k‖C0([− 1
2
, 1
2
]×[0,δkRk]) → 0

and thus |dwk(0, tkRk)| → 0 in contradiction to the assumption. �

Lemma 5.3.3. Let (X, d) be a metric space, X1, . . . , Xn topological spaces, π : X1 ∪ . . . ∪
Xn → X a continuous map, and f : X1 ∪ . . . Xn → R a non-negative continuous function.
Fix x ∈ Xi for some i = 1, . . . , n and ρ > 0. Suppose that π−1(B2ρ(π(x))) ∩Xi is complete
for each i = 1, . . . , n. Then there exists an x′ ∈ X1 ∪ . . . Xn and a positive number ρ′ ≤ ρ
such that

d(π(x′), π(x)) < 2ρ, sup
π−1Bρ′ (π(x′))

f ≤ 2f(x′), ρ′f(x′) ≥ ρf(x).

Proof. Otherwise, the same argument as in the proof of Hofer’s lemma [26, p.93] shows that
there exists a sequence xα ∈ X1 ∪ . . . ∪Xn such that

x0 = x, d(π(xα), π(xα+1)) ≤ ρ/2α, f(xα+1) > 2f(xα).

After passing to a subsequence, we obtain a Cauchy sequence xα in some Xi with f(xα) →
∞, which contradicts completeness and continuity of f . �

Remark 5.3.4. To see that the assumption that L02 is embedded is necessary, consider the
case that M0,M2 are points. In this case, if v : R × [0, 1] → M1 is a Floer trajectory of
index one with limits x+ 6= x−, we can consider the rescaled maps vδ : R × [0, δ] → M1.
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In this case a figure eight bubble always develops in the limit δ → 0. This shows that the
bijection between trajectories fails in this case.

5.4. Shrinking strips in quilted surfaces. Consider a quilted surface S containing a
component Sk that is diffeomorphic to R× [0, 1] and attached via seams {(`−, f−), (k, e−)}
and {(k, e+), (`+, f+)}. (We can allow one of these seams to be replaced by a boundary
component (k, e±) ∈ B. In that case we set M`± = {pt}.) Let L be Lagrangian boundary

conditions for S and suppose that the Lagrangians L− := L(`−,f−),(k,e−) ⊂ M−
`−

× Mk,

L+ := L(k,e+),(`+,f+) ⊂ M−
k × M`+ associated to the boundary components of Sk are

such that L− ◦ L+ is smooth and embedded by projection into M−
`−

×M`+ . Let S′ de-

note the quilted surface obtained by removing the component Sk and replacing it with
a new seam {(`−, f−), (`+, f+)}. We define Lagrangian boundary conditions L′ for S′ by
L′

(`−,f−),(`+,f+) := L− ◦L+ . In this setting we have a canonical identification of Floer chain

groups attached to the ends

(68) CF (Le)
∼→ CF (L′

e)

as in Remark 2.3.3 for every e ∈ E(S) ∼= E(S′). Consider the relative invariants ΦS and ΦS′

defined in Section 4.2.

Theorem 5.4.1. Suppose that all symplectic manifolds in M satisfy (M1-2) with the same
monotonicity constant, all Lagrangians in L satisfy (L1-3), and L is monotone and relative
spin. Assume moreover that L− ◦ L+ is embedded in the sense of Definition 2.0.5, satisfies
(L1),(L3), and L′ is monotone. Then (68) induces isomorphisms in Floer cohomology

Ψe : HF (Le) → HF (L′
e)

and furthermore these maps intertwine with the relative invariants:

ΦS′ ◦
(⊗

e∈E−

Ψe

)
=

(⊗

e∈E+

Ψe

)
◦ ΦS [dknk]

where in the shift of degree [dknk], dk is the number of incoming ends meeting the removed
strip minus the number of outgoing ends meeting the removed strip, and 2nk is the dimension
of Mk.

Example 5.4.2. To see the necessity of the degree shift in a simple example, suppose that
S = (S) is the disk with two incoming ends, and ΦS the corresponding relative invariant
described in (26). Suppose that L0, L1 intersect in a single point x. Then the theorem
above applies, S ′ is empty, ΦS′ is the trivial invariant, and Ψe− maps 〈x〉 ⊗ 〈x〉 7→ 1. On
the other hand, ΦS is the duality pairing, which has degree −n.

On the level of chain complexes the maps Ψe are simply the identity. Therefore it suffices
to show that the maps CΦS and CΦS′ [dknk] are equal for sufficiently small width. See (33)
for an explanation of the grading shift. The bijection between pseudoholomorphic quilts
follows from essentially the same degeneration argument as was used to prove Theorem
5.0.3. However, in this case the adjoint of the linearized operator is honestly surjective.
(There is no translational symmetry, so elements of the zero-dimensional moduli space
have linearized operators of index zero, not one.) The surfaces to the left and right of the
shrinking strip are arbitrary quilted surfaces, but this is of no relevance in the proof.
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As a first application of Theorem 5.4.1 we prove the claim of Remark 5.0.4. For that
purpose we denote by

Ψ : HF (L0, L01, L12, L2) → HF (L0, L02, L2),

Ψ̃ : HF (L02, (L01, L12)) → HF (L02, L02)

the isomorphisms given by Theorem 5.0.3. Then we have the following alternative descrip-
tion of Ψ (which a priori depends on L0 and L2) in terms of Ψ̃ and the identity morphism
1L02 ∈ HF (L02, L02), defined in Section 6.7.

Corollary 5.4.3. Let

Υ : HF (L02, (L01, L12)) ⊗HF (L0, L01, L12, L2) → HF (L0, L02, L2)

denote the relative invariant associated to the quilted surface on the right in Figure 10.
Then we have for all f ∈ HF (L0, L01, L12, L2)

Ψ(f) = Υ(Ψ̃−1(1L02) ⊗ f).

Moreover, in the notation of Section 6.8, we have

Υ(T ⊗ f) = ΦT (L0) ◦ f.

Proof. We apply Theorem 5.4.1 to Υ = ΦS , where the quilted surface S contains one simple

strip in M1. (The other surfaces are triangles.) This implies Υ(T ⊗f) = ΦS′(Ψ̃(T )⊗Ψ(f)),

where the quilted surface S ′ is obtained by replacing this strip with a seam condition in
L01 ◦L12 = L02. To calculate this for Ψ̃(T ) = 1L02 we use the gluing formula (34) to obtain

Υ(Ψ̃−1(1L02) ⊗ f) = ΦS′′(Ψ(f)), where S ′′ is the surface that is obtained by gluing the

quilted cap of Figure 33 into S ′. Since S′′ is a simple double strip (with seam condition L02

and boundary conditions L0, L2), and we do not quotient out by translation, the relative
invariant ΦS′′ is the identity, as in Example 4.1.6. This proves the first claim.

The second claim follows from a deformation of the quilt S to the glued quilt that
corresponds, by (34), to the composition of the natural transformation T 7→ ΦT (L0) ∈
HF ((L0, L02), (L0, L01, L12)) (given by the quilt in Figure 38) with the pair of pants product
from HF ((L0, L02), (L0, L01, L12))⊗HF ((L0, L01, L12), L2) to HF ((L0, L02), L2) (given by
the quilt in Figure 20). Figure 13 gives a picture summary of these arguments. �

∼
δ→0

=
Ψ̃(T )=1L02

T

L2 L02

L12
L01

L0

f

=

f

L2 L0L02

T
L12

L01
δ

L2 L0

Ψ(f)

L2 L02 L0

L02

Ψ(f)

L02Ψ̃(T )

Figure 13. Proof by pretty picture
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6. Functors associated to Lagrangian correspondences

6.1. Donaldson-Fukaya category of Lagrangians. Let (M,ω) be a symplectic manifold
satisfying (M1-2). We fix a Maslov cover LagN (M) → M as in Section 2.2, which will
be used to grade Floer cohomology groups. In addition, we fix a background class b ∈
H2(M,Z2), which will be used to fix orientations of moduli spaces and thus define Floer
cohomology groups with Z coefficients. In our examples, b will be either 0 or the second
Stiefel-Whitney class w2(M) of M .

Definition 6.1.1. We say that a compact Lagrangian submanifold L ⊂M is admissible if
the image of π1(L) in π1(M) is torsion and if L has minimal Maslov number NL ≥ 3.

The first assumption guarantees that any sequence of admissible Lagrangian submani-
folds is monotone. (Alternatively, one could work with the framework of Bohr-Sommerfeld
monotone Lagrangians described in Remark 3.1.4.) The last assumption implies that the
Floer cohomology of any sequence is well-defined, and can be relaxed to NL ≥ 2 by working
with matrix factorizations as explained in Section 7.

Definition 6.1.2. A brane structure on an admissible L consists of an orientation, a grading,
and a relative spin structure with background class b, see Section 2.2 and [46]. An admissible
Lagrangian equipped with a brane structure will be called a Lagrangian brane.

Remark 6.1.3. (a) We have not included in the definition of Lagrangian branes the data
of a flat vector bundle, in order to save space. The extension of the constructions
below to this case is left to the reader.

(b) If one wants only Z2-gradings on the morphism spaces of the Donaldson-Fukaya
category, then the N -fold Maslov cover and gradings of the Lagrangians may be
ignored.

(c) If one wants only Z2 coefficients, then the background class and relative spin struc-
tures may be ignored.

Definition 6.1.4. The Donaldson-Fukaya category

Don(M) := Don(M,LagN (M), ω, b)

is defined as follows:

(a) The objects of Don(M) are Lagrangian branes in M .
(b) The morphism spaces of Don(M) are the ZN -graded Floer cohomology groups with

Z coefficients
Hom(L,L′) := HF (L,L′)

constructed using a choice of perturbation datum consisting of a pair (J,H) of a
time-dependent almost complex structure J and a Hamiltonian H, as in Section 2.2.

(c) The composition law in the category Don(M) is defined by

Hom(L,L′) × Hom(L′, L′′) −→ Hom(L,L′′)

(f, g) 7−→ f ◦ g := ΦP (f ⊗ g),

where ΦP is the relative invariant associated to the “half-pair of pants” surface P ,
that is, the disk with three markings on the boundary (two incoming ends, one
outgoing end) as in Figure 14.

(d) The identity 1L ∈ Hom(L,L) is the relative invariant 1L := ΦS ∈ HF (L,L) associ-
ated to a disk S with a single marking (an outgoing end), see Figure 14
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L′′ L

L′
L

Figure 14. Composition and identity in the Donaldson-Fukaya category

The “closed” analog of the category Don(M), whose morphisms are symplectomorphisms
of M , was apparently introduced by Donaldson in a seminar talk, see [26, 12.6]. Subse-
quently Fukaya introduced an A∞ category version involving Lagrangian submanifolds.

Associativity of the composition follows from the gluing Theorem 4.1.8 applied to the
surfaces in Figure 15: The two ways of composing correspond to two ways of gluing the pair
of pants. The resulting surfaces are the same (up to a deformation of the complex structure),
hence the resulting compositions are the same. The identity axiom 1L0 ◦ f = f = f ◦ 1L1

L1

L2 L0

L3

L0

L1L2

L3

L0

L1L3

L2

= =

Figure 15. Associativity of composition

follows from the same gluing argument applied to the surfaces on the left and right in
Figure 16. Here – in contrast to the Floer trajectories – the solutions on the strip are
counted without quotienting by R, hence as in Example 4.1.6 this relative invariant is the
identity.

L1 L0L1 L0

L0
= =

L1 L0

L1

f

ff

Figure 16. Identity axiom
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Remark 6.1.5. The category Don(M) is independent of the choices of perturbation data, up
to isomorphism of categories: The relative invariants for the infinite strip with perturbation
data interpolating between two different choices gives an isomorphism of the morphism
spaces, and the gluing law in Theorem 4.1.8 implies compatibility of these morphisms with
compositions and identities.

6.2. Functors associated to symplectomorphisms. Let ψ : M0 → M1 be a graded
symplectomorphism (see Definition 2.2.2 (a)).

Definition 6.2.1. One can define a functor

Φ(ψ) : Don(M0) → Don(M1)

(a) on the level of objects by L 7→ ψ(L),
(b) on the level of morphisms

HF (L0, L1) → HF (ψ(L0), ψ(L1))

is induced by the obvious map of chain complexes

CF (L0, L1) → CF (ψ(L0), ψ(L1)), 〈x〉 7→ 〈ψ(x)〉
for all x ∈ I(L0, L1). (Here we use the HamiltoniansH ∈ Ham(L0, L1) andH◦ψ−1 ∈
Ham(ψ(L0), ψ(L1)).)

Note that Φ(ψ) satisfies the functor axioms

Φ(ψ)(f ◦ g) = Φ(ψ)(f) ◦ Φ(ψ)(g), Φ(ψ)(1L) = 1ψ(L).

Furthermore if ψ01 : M0 →M1 and ψ12 : M1 →M2 are symplectomorphisms then

Φ(ψ12 ◦ ψ01) = Φ(ψ01) ◦ Φ(ψ12).

In terms of Lagrangian correspondences this functor is L 7→ L ◦ graphψ on objects. This
suggests that one should extend the functor to more general Lagrangian correspondences
L01 ⊂ M−

0 ×M1 by L 7→ L ◦ L01 on objects. However, these compositions are generically
only immersed, so one would have to allow for singular Lagrangians as objects in Don(M1).
Moreover, it is not clear how to extend the functor on the level of morphisms, that is Floer
cohomology groups. In the following sections we propose some alternative definitions of
functors associated to general Lagrangian correspondences.

6.3. First functor for Lagrangian correspondences. Fix an integer N > 0 and let AbN
be the category of ZN -graded abelian groups. Let Don(M)∨ be the category whose objects
are functors from Don(M) to AbN , and whose morphisms are natural transformations.

Let (Mj , ωj), j = 0, 1 be compact monotone symplectic manifolds equipped with N -

fold Maslov coverings LagN (Mj) and background classes bj , and let L01 ⊂M−
0 ×M1 be an

admissible Lagrangian correspondence equipped with a grading and a relative spin structure
with background class −π∗

0b0 + π∗1b1.

Definition 6.3.1. We can define a contravariant functor associated to L01,

ΦL01 : Don(M0) → Don(M1)
∨.

(a) On the level of objects, for every Lagrangian L0 ⊂M0 we define a functor ΦL01(L0) :
Don(M1) → AbN by

L1 7→ HF (L0, L01, L1) = HF (L0 × L1, L01)
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on objects L1 ⊂M1, and on morphisms

HF (L1, L
′
1) → Hom(HF (L0, L01, L1),HF (L0, L01, L

′
1))

f 7→
{
g 7→ ΦS1

(g ⊗ f)
}

is defined by the relative invariant associated to the quilted surface S1 shown in
Figure 17,

ΦS1
: HF (L0, L01, L1) ⊗HF (L1, L

′
1) → HF (L0, L01, L

′
1).

(b) The functor on the level of morphisms associates to every f ∈ HF (L0, L
′
0) a natural

transformation

ΦL01(f) : ΦL01(L
′
0) → ΦL01(L0),

which maps objects L1 ⊂M1 to the AbN -morphism

ΦL01(f)(L1) :
HF (L′

0, L01, L1) → HF (L0, L01, L1)

g 7→ ΦS0
(f ⊗ g)

defined by the relative invariant associated to the quilted surface S0 shown in Figure
17,

ΦS0
: HF (L0, L

′
0) ⊗HF (L′

0, L01, L1) → HF (L0, L01, L1).
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Figure 17. Lagrangian functor for morphisms

The composition axiom for the functors ΦL01(L0) and the commutation axiom for the nat-
ural transformations ΦL01(f) follow from the gluing formula (34) applied to Figures 18 and
19. Clearly the functor ΦL01 is unsatisfactory, since given two Lagrangian correspondences

L01 ⊂M−
0 ×M1, L12 ⊂M−

1 ×M2

it is not clear how to define the composition of the associated functors

ΦL01 : Don(M0) → Don(M1)
∨, ΦL12 : Don(M1) → Don(M2)

∨.

As a solution (perhaps not the only one) we will define in Section 6.4 a category sitting
in between Don(M) and Don(M)∨, whose image in Don(M)∨ is roughly speaking the
category of functors Don(M) → AbN of geometric origin. This will allow for the definition
of composable functors for general Lagrangian correspondences in Section 6.5.
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Figure 18. Composition axiom for Lagrangian functors
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Figure 19. Commutation axiom for Lagrangian functors

6.4. Generalized Donaldson-Fukaya category. In this section we extend the Donaldson-
Fukaya category Don(M) to a category Don#(M) which has generalized Lagrangian sub-
manifolds as objects. Hence Don#(M) sits in between Don(M) and Don(M)∨. One might
draw an analogy here with the way square-integrable functions sit between smooth func-
tions and distributions. Don#(M) admits a functor to Don(M)∨, whose image is roughly
speaking the subcategory of Don(M)∨ generated by objects of geometric origin.

Remark 6.4.1. For readers familiar with the A∞ set-up, we remark that it seems to be
an open question whether the derived Fukaya category is self-dual. If it is, one could do
without these constructions by working directly in the derived category of the dual of the
Fukaya category. But then we would have to work directly with A∞ categories from the
beginning, which would substantially complicate the exposition.

Let (M,ω) be a symplectic manifold satisfying (M1-2) with monotonicity constant τ ≥ 0.
We fix a Maslov cover LagN (M) →M and a background class b ∈ H2(M,Z2).

Let L be a generalized Lagrangian submanifold of M , i.e. L = (L(−r)(−r+1), . . . , L(−1)0)

is a sequence of compact Lagrangian correspondences L(i−1)i ⊂ N−
i−1 × Ni for a sequence

N−r, . . . , N0 of any length r ≥ 0 of symplectic manifolds with N−r = {pt} a point and
N0 = M . We call L admissible if each Ni satisfies (M1-2) with the monotonicity constant
τ ≥ 0, the image of each π1(L(i−1)i) in π1(N

−
i−1 × Ni) is torsion, and each L(i−1)i has

minimal Maslov number NL(i−1)i
≥ 3. (Alternatively, we could work in the framework

of Bohr-Sommerfeld monotone Lagrangians described in Remark 3.1.4.) An (admissible)
Lagrangian submanifold L ⊂ M is an (admissible) generalized Lagrangian with r = 0.
Recall moreover that a generalized Lagrangian L is a generalized Lagrangian correspondence
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from {pt} to M , in the sense of Definition 2.1.1. We picture L as a sequence

{pt} N−r . . . N−1 N0 = M-

L(−r)(−r+1)
-

L(−r+1)(−r+2)
-

L(−2)(−1)
-

L(−1)0

.

Given two generalized Lagrangians L,L′ of M we can transpose one and concatenate them
to a sequence of Lagrangian correspondences from {pt} to {pt},

{pt} . . . N0 = M = N ′
0

. . . {pt}-

L(−r)(−r+1)
-

L(−1)0
-

(L′
(−1)0

)t

-

(L′
(−r′)(−r′+1)

)t

.

The Floer cohomology of this sequence (as defined in Section 3.3 is the natural generalization
of the Floer cohomology for pairs of Lagrangian submanifolds. Hence we define

(69) HF (L,L′) := HF (L(−r)(−r+1), . . . , L(−1)0, (L
′
(−1)0)

t, . . . , (L′
(−r′)(−r′+1))

t).

Note here that every such sequence arising from a pair of admissible generalized Lagrangians
is automatically monotone in the sense of Section 3.3, by Lemma 3.1.3.

Definition 6.4.2. We define the generalized Donaldson-Fukaya category

Don#(M) := Don#(M,LagN (M), ω, b).

(a) The objects of Don#(M) are admissible generalized Lagrangians of M , equipped
with orientations, a grading, and a relative spin structure (see Definitions 2.3.1,
3.3.1).

(b) The morphism spaces of Don#(M) are the ZN -graded Floer cohomology groups (see
(69))

Hom(L,L′) := HF (L,L′)[d]

given by choices of a perturbation datum and widths as described in Section 4.3; the
second group is shifted by degree

d =
1

2

(∑

k

dim(Nk) +
∑

k′

dim(N ′
k′)
)
,

and for Z-coefficients the Floer homology groups are modified by the inclusion of
additional determinant lines as below in (70).

(c) The composition of morphisms in Don#(M),

Hom(L,L′) × Hom(L′, L′′) −→ Hom(L,L′′)

(f, g) 7−→ f ◦ g := ΦP (f ⊗ g)

is defined by the relative invariant ΦP associated to the quilted half-pair of pants
surface P in Figure 20, with orderings given as follows: The relative invariant is
independent of the orderings of the patches with one outgoing end by Remark 4.2.6.
The remaining patches have two incoming and zero incoming edges, and these are
ordered from the top down, that is, starting with those furthest from the boundary.

(d) Identities 1L ∈ Hom(L,L) are furnished by relative invariants 1L := ΦS ∈ Hom(L,L)
associated to the quilted disk S with a single outgoing end, as in Figure 21, with com-
ponents ordered from the bottom up, that is, with the outer-most patches ordered
first.

Note that both the identity and composition are degree 0 by (33). The identity and
associativity axioms are satisfied with Z2 coefficients by Theorem 4.2.8 applied to the quilted
versions of Figures 15, 16.
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Remark 6.4.3. To obtain the axioms with Z coefficients requires a modification of the Floer
cohomology groups, incorporating the determinant lines in a more canonical way. This
will be treated in detail in [46], so we only give a sketch here: For each intersection point
x ∈ I(L,L′) we say that an orientation for x consists of the following data: A partially
quilted surface13 S with a single end, complex vector bundles E over S, and totally real
subbundles F over the boundaries and seams, such that near infinity on the strip-like ends
E and F are given by (TxiMi) and TxL, TxL

′ ; a real Cauchy-Riemann operator DE,F ;
an orientation on the determinant line det(DE,F ). We say that two orientations for x
are isomorphic if the two problems have the same bundles E, and the surfaces, boundary
and seam conditions are deformation equivalent after a possible re-ordering of boundary
components etc., and the orientations are related by the isomorphism of determinant lines
arising from re-ordering. Let O(x) denote the space of isomorphism classes of orientations
for x. Define

(70) C̃F (L,L′) =
⊕

x∈I(L,L′)

O(x) ⊗Z2 Z.

The Floer coboundary operator extends canonically to an operator of degree 1 on C̃F (L,L′),

and let H̃F (L,L′) denote its cohomology. This is similar to the definition given in e.g.

Seidel [37, 12.19], except that we allow more general surfaces. The group H̃F (L,L′) is of
infinite rank over Z, but it has finite rank over a suitable graded-commutative Novikov ring
generated by determinant lines.

The relative invariants extend to operators Φ̃S operating on the tensor product of (ex-
tended) Floer cohomologies. In particular, the quilted pair of pants defines an operator

Φ̃P : H̃F (L,L′) ⊗ H̃F (L′, L′′) → H̃F (L,L′′).

If we fix orientations for each generator 〈x〉, as in the definition of HF , then the glu-
ing sign for the first gluing (to the second incoming end) in the proof of associativity,
Figure 15, is +1. For the second gluing (to the first incoming end) when applied to

〈x1〉 ⊗ 〈x2〉 ⊗ 〈x3〉 the sign is (−1)|x3|
1
2

P
i dim(N

L1
i ). In addition, the two gluings induce dif-

ferent orderings of patches in the glued quilted surface, which are related by the additional

sign (−1)

(
1
2

P
i dim(N

L1
i )
)(

1
2

P
i dim(N

L2
i )
)
. Combined together, these factors cancel the sign

arising from the re-ordering of determinants in the definitions of Φ̃P (Φ̃P (〈x1〉⊗〈x2〉)⊗〈x3〉)
and Φ̃P (〈x1〉 ⊗ Φ̃P (〈x2〉 ⊗ 〈x3〉)).

The identity axiom involves gluing a quilted cup with a quilted pair of pants; the orderings
of the patches for the quilted cup and quilted pants above are chosen so that the gluing sign
for gluing the quilted cup with quilted pants to obtain a quilted strip is +1 for gluing into

the second argument, and (−1)|x|
1
2

P
i dim(Ni) for gluing into the first argument. Again, the

additional sign is absorbed into the isomorphism of determinant lines induced by gluing.

Remark 6.4.4. To simplify pictures of quilts we will use the following conventions indicated
in Figure 22 : A generalized Lagrangian submanifold L of M can be used as “boundary
condition” for a surface mapping to M in the sense that the boundary arc that is labeled
by the sequence L = (L(−r)(−r+1), . . . , L(−1)0) of Lagrangian correspondences from {pt} to

13See [46] for the definition of partial quilts. For example, the standard cup orientation for x =
(x1, . . . , xN ) will use unquilted cups Si associated to each Txi

Mi, and identified via seams on the strip-
like ends.
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M . . .
L(−r)(−r+1)

. . .L′′
(−2)(−1)

L
′
(−2)(−1)

L′
(−1)0

L′
(−r)

(−r+1)

N′
−1

N
′′
−1

N
′′
−r

′′+1

N′
−r

′+1

L(−1)0

N−1

N−r+1

L′′
(−r)(−r+1)

L′′
(−1)0

L(−2)(−1)

L′′ L

L′

=:

Figure 20. Quilted pair of pants

L

L(−2)(−1)

L(−r)(−r+1)

. . .

L(−1)0

M

N−1

N−r+1

=:

Figure 21. Quilted identity

M is replaced by a sequence of strips mapping to N−1, . . . , N−r+1, with seam conditions in
L(−1)0, . . . , L(−r+2)(−r+1) and a final boundary condition in L(−r)(−r+1).

Similarly, a generalized Lagrangian correspondence (see Section 6.5) L between M− and
M+ can be used as “seam condition” between surfaces mapping to M± in the sense that the
seam that is labeled by the sequence L = (L01, . . . , L(r−1)r) of Lagrangian correspondences
from M− to M+ is replaced by a sequence of strips mapping to M1, . . . ,Mr−1 with seam
conditions in L01, . . . , L(r−1)r.

Remark 6.4.5. As for Don(M), the category Don#(M) is independent of the choices of per-
turbation data and widths up to isomorphism of categories, see Remark 6.1.5 and Proposi-
tion 4.3.1.

Proposition 6.4.6. The map L 7→ L∨, which for all general Lagrangians L in M is given
by

L∨(L0) := Hom(L,L0) = HF (L−r(−r+1), . . . , L(−1)0, L0)[d]

for all Lagrangian submanifolds L0 ⊂ M and with degree shift d = 1
2

∑
k dim(Nk), extends

to a contravariant functor Don#(M) → Don(M)∨.

Proof. The functor L∨ : Don(M) → AbN can be defined on morphisms by

L∨ :
Hom(L1, L

′
1) → Hom(Hom(L,L1),Hom(L,L′

1))

f 7→
{
g 7→ g ◦ f = ΦP (g ⊗ f)

}
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:=
L

L(−r+1)(−r+2)

N−r+1

L(−r)(−r+1)

N−r+2

M

L(−1)0

L(−2)(−1)
N−1

M

...
...

:=

Mr−1

M−

L01

M1

M−

...
...L

M+

M+
L(r−1)r

L12

Figure 22. Conventions on using generalized Lagrangians and Lagrangian
correspondences as boundary and seam conditions

using the composition on Don#(M). To morphisms f ∈ Hom(L,L′) of Don#(M) we can
then associate the natural transformation f∨ : L′∨ → L∨, which maps every object L1 ⊂M
of Don(M) to the following AbN -morphism f∨(L1):

Hom(L′, L1) → Hom(L,L1)

g 7→ f ◦ g = ΦP (f ⊗ g),

again given by composition on Don#(M). The axioms follow from the gluing formula (34)
applied to jazzed-up versions of Figures 18 and 19 (which show the example L = (L0, L01),
L′ = (L′

0, L01)). In this case the orientations are independent of the ordering of patches
since all have one boundary component and one outgoing end. �

6.5. Composable functors for Lagrangian correspondences. Let M0 and M1 be two
symplectic manifolds satisfying (M1-2) with the same monotonicity constant τ ≥ 0. We
fix Maslov covers LagN (Mi) → Mi and background classes bi ∈ H2(Mi,Z2). Given a
smooth, compact Lagrangian correspondence L01 ⊂M−

0 ×M1 we can now define a functor

Φ(L01) : Don#(M0) → Don#(M1). For this purpose we need admissibility assumptions and
an additional brane structure on L01. We will give the precise definitions in Section 6.7.
For now let us use the preliminary definition that for any L ∈ Obj(Don#(M0)) we have
(L,L01) ∈ Obj(Don#(M1)).

Definition 6.5.1. We define a functor

Φ(L01) : Don#(M0) → Don#(M1).

(a) On the level of objects, Φ(L01) is defined by appending the Lagrangian correspon-
dence to the sequence of Lagrangian correspondences: For a generalized Lagrangian
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L = (L−r(−r+1), . . . , L(−1)0) of M0 with corresponding sequence of symplectic man-
ifolds ({pt}, N−r+1, . . . , N−1,M0) we put

Φ(L01)(L) := (L,L01) := (L(−r)(−r+1), . . . , L(−1)0, L01)

with the corresponding sequence ({pt}, N−r+1, . . . , N−1,M0,M1) of symplectic man-
ifolds.

(b) On the level of morphisms, for any pair L,L′ of generalized Lagrangians in M0, we
define

Φ(L01) := ΦS : Hom(L,L′) → Hom(Φ(L01)(L),Φ(L01)(L
′))

to be the relative invariant associated to the quilted surface S with two punctures
and one interior circle, as in Figure 23.
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=

Figure 23. The Lagrangian correspondence functor Φ(L01) on morphisms

Remark 6.5.2. In the case that M1 is a point, the map for morphisms is the dual of the pair
of pants product.

For composable morphisms f ∈ Hom(L,L′), g ∈ Hom(L′, L′′) one shows ΦL01(f ◦ g) =
ΦL01(f)◦ΦL01(g) by applying (34) to the gluings shown in Figure 24 (simplifying the picture
by the convention of Figure 22), which yield homotopic quilted surfaces. The gluing signs for
both gluings are positive. Similarly, the second gluing shows that Φ(L01)(1L) = 1Φ(L01)(L),
since we have ordered the patches of the quilted cup from the outside in.

Remark 6.5.3. The surfaces of the first gluing in Figure 24 can equivalently be represented
as degenerations of one quilted disk. The corresponding one-parameter family in Figure 25
is the one-dimensional multiplihedron of Stasheff, see [42], [24, p. 113], to which we will
return in [25].

With this new definition, any two functors associated to smooth, compact, admissible
Lagrangian correspondences, Φ(L01) : Don#(M0) → Don#(M1) and Φ(L12) : Don#(M1) →
Don#(M2), are clearly composable. More generally, consider a sequence

L0r = (L01, . . . , L(r−1)r)

of Lagrangian correspondences L(j−1)j ⊂ M−
j−1 ×Mj. (That is, L0r is a generalized La-

grangian correspondence from M0 to Mr in the sense of Definition 2.1.1.) Assume that L0r

is admissible in the (preliminary) sense that, for any L ∈ Obj(Don#(M0)) and k = 1, . . . , r,
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M1M0

L

L01

L′′

M0

M1

L01

L′

L

L′′

=L′

f

g

g

f

M0

L

M1
L01

M1
L01

= M0

L

Figure 24. The functor axioms for ΦL01

Figure 25. Degeneration view of the first functor axiom

we have (L,L01, . . . , L(k−1)k) ∈ Obj(Don#(Mk)). We can then define a functor by concate-
nation

(71) Φ(L0r) := Φ(L01) ◦ . . . ◦ Φ(L(r−1)r) : Don#(M0) → Don#(Mr).

Remark 6.5.4. On the level of morphisms, the functor Φ(L0r) is given by the relative in-
variant associated to the quilted surface S in Figure 26,

Φ(L0r) = ΦS : Hom(L,L′) → Hom(Φ(L0r)(L),Φ(L0r)(L
′))

for all generalized Lagrangian submanifolds L,L′ ∈ Obj(Don#(M0)), with patches with two
outgoing ends ordered from bottom up. This follows from (34) applied to the gluing shown
in Figure 26.

6.6. Functors for composed Lagrangian correspondences and graphs. As first ap-
plication of our main Theorem 1.0.1 we will show that the composed functor Φ(L01)◦Φ(L12) :
Don#(M0) → Don#(M2) is isomorphic to the functor Φ(L01 ◦L12) of the geometric compo-
sition L01 ◦ L12 ⊂M−

0 ×M2, if the latter is embedded. More precisely and more generally,
we have the following result.
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M2

= =

L′
M0

L
L′

M0
L

L02

M2

M1L01

L12

M2

L12

L′ M0 L

M1

L01

Figure 26. The composition Φ(L01) ◦ . . . ◦Φ(L(r−1)r) is given by a relative
invariant for the sequence L0r = (L01, . . . , L(r−1)r). (Here r = 2.)

Theorem 6.6.1. Let L0r = (L01, . . . , L(r−1)r) and L′
0r′ = (L′

01, . . . , L
′
(r′−1)r′) be two admis-

sible generalized Lagrangian correspondence from M0 to Mr = Mr′. Suppose that they are
equivalent in the sense of Section 2.1 through a series of embedded compositions of consec-
utive Lagrangian correspondences, and such that each intermediate generalized Lagrangian
correspondence is admissible (see Section 6.7).

Then for any two generalized Lagrangian submanifolds L,L′ ∈ Obj(Don#(M0)) there is
an isomorphism

Ψ : Hom(Φ(L0r)(L),Φ(L0r)(L
′)) → Hom(Φ(L′

0r′)(L),Φ(L′
0r′)(L

′))

which intertwines the functors on the morphism level,

Ψ ◦ Φ(L0r) = Φ(L′
0r′) : Hom(L,L′) → Hom(Φ(L′

0r′)(L),Φ(L′
0r′)(L

′)).

Proof. By assumption there exists a sequence of admissible generalized Lagrangian corre-
spondences Lj connecting L0 = L0r to LN = L′

0r′ . In each step two consecutive Lagrangian
correspondences L−, L+ in the sequence Lj = (. . . , L−, L+, . . .) are replaced by their em-
bedded, monotone composition L− ◦ L+ in Lj±1 = (. . . , L− ◦ L+, . . .). To each Lj we
associate seam conditions for the quilted surface S j on the right of Figure 26. Replacing
the consecutive correspondences by their composition corresponds to shrinking a strip in
this surface. So Theorem 5.4.1 provides an isomorphism Ψ

ej+
associated to the outgoing

end ej+ of each surface Sj such that Ψ
ej+

◦ΦSj = ΦSj±1 . Figure 27 shows an example of this

degeneration. The isomorphism Ψ is given by concatenation of the isomorphisms Ψ
ej+

(and

their inverses in case the composition is between Lj and Lj−1). It intertwines ΦS0 = Φ(L0r)

and ΦSN = Φ(L′
0r′) as claimed. �

Next, let ψ : M0 → M1 be a symplectomorphism and graphψ ⊂ M−
0 ×M1 its graph.

The functor Φ(ψ) defined in Section 6.2 extends to a functor

Φ(ψ) : Don#(M0) → Don#(M1)
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∼
δ→0

L′ M0 L L′

M0

L

L01 ◦ L12

M2

M1

δ

L01

L12

M2

Figure 27. Isomorphism between the functors Φ(L01) ◦ Φ(L12) and Φ(L01 ◦ L12)

on the level of objects by

L = (L−r(−r+1), . . . , L−10) 7→ (L−r(−r+1), . . . , (1N−1 × ψ)(L−10)) =: ψ(L).

On the level of morphisms, the functor Φ(ψ) : Hom(L,L′) → Hom(Φ(ψ)(L),Φ(ψ)(L′)) is
defined by 〈(x−r, . . . , x−1, x0)〉 7→ 〈(x−r, . . . , x−1, ψ(x0)〉 on the generators I(L,L′) of the
chain complex. As another application of our main Theorem we will show that this functor
is in fact isomorphic to the functor Φ(graphψ) : Don#(M0) → Don#(M1) that we defined
for the Lagrangian correspondence graphψ.

Proposition 6.6.2. Φ(ψ) and Φ(graphψ) are canonically isomorphic as functors from
Don#(M0) to Don#(M1). More precisely, there exists a canonical natural transforma-
tion α : Φ(ψ) → Φ(graphψ), that is α(L) ∈ Hom(Φ(ψ)(L),Φ(graphψ)(L)) for every L ∈
Obj(Don#(M0)) such that α(L) ◦ Φ(graphψ)(f) = Φ(ψ)(f) ◦ α(L′) for all f ∈ Hom(L,L′),
and all α(L) are isomorphisms in Don#(M1).

Proof. Consider a generalized Lagrangian submanifold L = (L(−r)(−r+1), . . . , L(−1)0) ∈
Obj(Don#(M0)). By Theorem 1.0.1 we have canonical isomorphisms from

Hom(Φ(ψ)L,Φ(graphψ)L) = Hom(ψ(L), (L, graphψ))

= Hom(. . . (1 × ψ)(L(−1)0), (graphψ)t, (L(−1)0)
t . . .)

to all three of

Hom(. . . (1 × ψ)(L(−1)0), (L(−1)0 ◦ (graphψ))t . . .) = Hom(ψ(L), ψ(L)),

Hom(. . . L(−1)0, graphψ, (graphψ)t, (L(−1)0)
t . . .) = Hom((L, graphψ)(L, graphψ)),

Hom(. . . (1 × ψ)(L(−1)0) ◦ graph(ψ−1), (L(−1)0)
t . . .) = Hom(L,L),

see Figure 28.14 The isomorphisms are by (ψ(x), x) 7→ ψ(x), (x, ψ(x0), x), or x, respectively,
on the level of perturbed intersection points x = (x−r, . . . , x0) ∈ I(L,L). The first two iso-
morphisms also intertwine the identity morphisms 1ψ(L)

∼= 1(L,graphψ) by Theorem 5.0.3 and
the degeneration of the quilted identity indicated in Figure 28; this is the identity axiom for
the functor Φ(graphψ). The identity axiom for Φ(ψ) implies that the above isomorphisms
(their composition which coincides with Φ(ψ) : Hom(L,L) → Hom(ψ(L), ψ(L))) also in-
tertwine 1L with 1ψ(L). We define α(L) ∈ Hom(Φ(ψ)L,Φ(graph(ψ))L) to be the element
corresponding to the identities 1Φ(ψ)(L)

∼= 1Φ(graphψ)(L)
∼= 1L under these isomorphisms.

14Strictly speaking, one has to apply the shift functor ΨM0 of Definition 6.6.4 to adjust the relative spin
structure on L. However, HF (ΨM0(L),ΨM0(L)) is canonically isomorphic to HF (L,L).
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δ = δ1 = δ3 → 0

δ

∈ ∈ ∈

HF (ψ(L), ψ(L)) ∼= HF (L,L)HF (ψ(L), (L, graphψ)) ∼= HF ((L, graphψ), (L, graphψ)) ∼=

1(L,graphψ) 1L1ψ(L)

δ1 → 0 δ3 → 0 δ2 → 0

δ1 δ2 δ3δ2δ1

∈

α(L)

ψ(L) ψ(L) L LL ψ ψ(L) L ψ ψ L

Figure 28. Natural isomorphisms of Floer cohomology groups and defini-
tion of the natural transformation α : The light and dark shaded surfaces
are mapped to M0 and M1 respectively and we abbreviate graphψ by ψ and
Φ(ψ)(L) by ψ(L).

Each α(L) is an isomorphism since α(L)◦f = I1(f) for all f ∈ HF (Φ(graphψ)L,L′′) and
f ◦ α(L) = I2(f) for all f ∈ HF (L′′,Φ(ψ)L), with the isomorphisms (again from Theorem
5.0.3)

I1 : HF ((L, graphψ), L′′) → HF (ψ(L), L′′),

I2 : HF (L′′, ψ(L)) → HF (L′′, (L, graphψ)).

These identities can be seen from the gluing formula (34) and Theorem 5.0.3, applied to
the gluings and degenerations indicated in Figure 29. The quilted surfaces can be deformed
to a strip resp. a quilted strip (which corresponds to a strip in M−

0 ×M1). These rela-
tive invariants both are the identity since the solutions are counted without quotienting
by R, see Example 4.1.6. For f ∈ Hom(L,L′) this already shows the first equality in

ψ(L)L′′

ψ

L

f α(L) f

L′′

ψ

L

= f

L′′L′′

fα(L)

ψ

L ψ(L)

ψ(L)

= f

f

∼∼
I2I1

Figure 29. α(L) is an isomorphism in Don#(M1)

Φ(ψ)(f) ◦ α(L′) = I(f) = α(L) ◦ Φ(graphψ)(f) with the isomorphism I : HF (L,L′) →
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HF (ψ(L), (L′, graphψ)). More precisely, on the chain level for x ∈ I(L,L′)

Φ(ψ)(x) ◦ α(L′) = (ψ(x), x) = α(L) ◦ Φ(graphψ)(x).

The second identity is proven by repeatedly using Theorem 5.4.1 and the gluing formula
(34), see Figure 30. �

x

ψ

L

ψ(L)L′ L′ ψ(L)

ψ

L

=

α(L) α(L)

∼
I

x x

L′ L

= x

Figure 30. Isomorphism of functors for a symplectomorphism and its
graph, using shrinking strips

Remark 6.6.3. There is an analytically easier proof of the previous Proposition 6.6.2 in the
special case when one of the Lagrangian correspondences is the graph of a symplectomor-
phism: Instead of shrinking a strip as in Theorems 5.0.3 and Theorem 5.4.1 one can apply
the symplectomorphism to the whole strip; for a suitable choice of perturbation data it then
attaches smoothly to the other surface in the quilt, and the seam can be removed.

The functor Φ(IdM0) associated to the identity map on M0 clearly is the identity functor
on Don#(M0). So Proposition 6.6.2 gives a (rather indirect) isomorphism between the
functor for the diagonal and the identity functor. To be more precise, taking into account
the relative spin structure of the diagonal, we need to introduce the following shift functor.

Definition 6.6.4. We define a shift functor

ΨM0 : Don#(M0,LagN (M0), ω0, b0) → Don#(M0,LagN (M0), ω0, b0 −w2(M0)).

(a) On the level of objects, ΨM0 maps every generalized Lagrangian L ∈ Don#(M0) to
itself but shifts the relative spin structure to one with background class b0−w2(M0),
as explained in [46].

(b) On the level of morphisms, ΨM0 : Hom(L,L′) → Hom(ΨM0(L),ΨM0(L
′)) is the

canonical isomorphism for shifted spin structures from [46].

Remark 6.6.5. Let ∆ ⊂ M−
0 × M0 denote the diagonal. Throughout, we will equip ∆

with the orientation and relative spin structure that are induced by the projection to the
second factor (see [46]). Then ∆ is an admissible Lagrangian correspondence from M0

to M1, where M1 = M0 with the same symplectic structure ω1 = ω0 and Maslov cover
LagN (M1) = LagN (M0), but with a shifted background class b1 = b0 − w2(M0). In other
words, ∆ is an object in the category Don#

(
M0,M1) that is introduced in Section 6.7 below.

In the following, we will drop the Maslov cover and symplectic form from the notation.
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Corollary 6.6.6. The functor Φ(∆) : Don#(M0, b0) → Don#(M0, b0 −w2(M0)) associated
to the diagonal is canonically isomorphic to the shift functor ΨM0.

6.7. Composition in the Donaldson-Fukaya category of correspondences. The set
of sequences of Lagrangian correspondences forms a category in its own right, which we
define in close analogy to the generalized Donaldson category in Section 6.4. We will then
be able to define a composition functor for these categories.

Let Ma and Mb be symplectic manifolds satisfying (M1-2) with the same monotonicity
constant τ ≥ 0. We fix an integer N > 0, N -fold Maslov covers LagN (M(·)) → M(·), and

background classes b(·) ∈ H2(M(·),Z2). Let L = (L01, L12, . . . , L(r−1)r) be a generalized
Lagrangian correspondences from Ma to Mb, as defined in Section 2.1. We picture L as
sequence

Ma = N0 N1 . . . Nr = Mb
-

L01
-

L12
-

L(r−1)r

.

We call a generalized Lagrangian correspondence L from Ma to Mb admissible if each
Nj satisfies (M1-2) with the monotonicity constant τ ≥ 0, the image of each π1(L(j−1)j)

in π1(N
−
j−1 × Nj) is torsion, and each L(j−1)j has minimal Maslov number NL(j−1)j

≥ 3.

(Alternatively, we could work in the framework of Bohr-Sommerfeld monotone Lagrangians
as described in Remark 3.1.4.)

Definition 6.7.1. We define the Donaldson-Fukaya category of correspondences

Don#(Ma,Mb) := Don#(Ma,Mb,LagN (Ma),LagN (Mb), ωa, ωb, ba, bb).

(a) The objects of Don#(Ma,Mb) are admissible generalized Lagrangian correspon-
dences from Ma to Mb, equipped with orientations, gradings, and relative spin
structures (see Definitions 2.3.1, 3.3.1).15

(b) The morphism spaces of Don#(Ma,Mb) are the ZN -graded Floer cohomology groups
(defined in Sections 3.3 and 4.3)

Hom(L,L′) := HF (L,L′)[d],

where the second group is shifted by d = 1
2(
∑

k dim(Nk) +
∑

k′ dim(N ′
k′)). For Z-

coefficients one has to introduce determinant lines as in Remark 6.4.3. See Figure
31 for alternative views of the quilted holomorphic cylinders of Figure 7, which are
counted (modulo R-shift) as Floer trajectories.

(c) The composition of morphisms in Don#(Ma,Mb),

Hom(L,L′) × Hom(L′, L′′) −→ Hom(L,L′′)

(f, g) 7−→ f ◦ g := ΦP (f ⊗ g)

is defined by the relative invariant ΦP associated to the quilted pair of pants surface
P (this time the pair of pants is an honest one, not just the front) in Figure 32,
where the patches without outgoing ends are ordered from Ma to Mb.

(d) The identity 1L ∈ Hom(L,L) for a generalized Lagrangian correspondence L is given
by the relative invariant 1L := ΦS associated to the quilted cap in Figure 33, where
the patches without outgoing ends are ordered from Mb to Ma.

15In the previous notation, a grading on L is a collection of N -fold Maslov covers LagN (Nj) → Nj

for j = 0, . . . , r and gradings of the Lagrangian correspondences L(j−1)j . Here the gradings on N0 = Ma

and Nr = Mb are the fixed ones. A relative spin structure on L is a collection of background classes bj ∈
H2(Nj ,Z2) for j = 0, . . . , r and relative spin structures on L(j−1)j with background classes −π∗

j−1bj−1+π∗
j bj .

Here b0 = ba and br = bb are the fixed background classes in Ma and Mb.
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L′

L

Mb
Ma

Mb

Ma

LL′ ⊗

Mb

Ma

== L′
12

L′
10

L′
(r′−1)r′

L(r−1)r

L01

...

...
L12

⊗

Figure 31. Floer trajectories for pairs of generalized Lagrangian correspondences

Remark 6.7.2. In Figure 31 and the following pictures, the outer circles will always be
outgoing ends. The inner circles are usually incoming ends, indicated by a ⊗ or marked
with the incoming morphism. Ends at the top resp. bottom of pictures will always be
outgoing resp. incoming, unless otherwise indicated by arrows.

Note that all objects L ∈ Obj(Don#(Ma,Mb)) satisfy the preliminary admissibility as-
sumption of Section 6.5 : For any La ∈ Obj(Don#(Ma)) we have (La, L) ∈ Obj(Don#(Mb)).
The associativity and identity axiom for this category follow from the gluing formula (34)
applied to the gluings (indicated by dashed lines) in Figure 34. Note that – in contrast
to Figure 31 – the solutions on the quilted annulus (i.e. cylinder) are counted without
quotienting by R, hence as in Example 4.1.6 this relative invariant is the identity.

Mb

Ma

L′
L′′

⊗

L

L⊗L′′ L′

Ma

Mb

=

Figure 32. Quilted pair of pants: Composition of morphisms for La-
grangian correspondences

L=

Ma

L

Mb

Mb

Ma

Figure 33. Quilted cap: Identity for Lagrangian correspondences
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fgh

Ma

Mb

L′′′ L′′ L′ L fgh

Ma

Mb

L′′′ L′′ L′ L

Ma

Mb

L′ L L′

Ma

MbMb

Ma

L′ L L= =f ff

f ◦ (g ◦ h) = (f ◦ g) ◦ h

=

1L ◦ f = f f = f ◦ 1L′

Figure 34. Axioms for Donaldson-Fukaya category of correspondences

Remark 6.7.3. Consider the case where the symplectic manifolds Ma = Mb = M agree
(including Maslov cover and background class). Then for any admissible generalized La-
grangian correspondence L ∈ Obj(Don#(M,M)) the composition of morphisms in (c) de-
fines a ring structure on Hom(L,L), and (d) provides an identity element. Another applica-
tion of our main theorem shows that this ring structure is isomorphic under embedded com-
positions of correspondences: Let L and L′ be two admissible generalized Lagrangian cor-
respondences from M to itself. Suppose that they are equivalent in the sense of Section 2.1
through a series of embedded compositions of consecutive Lagrangian correspondences, and
such that each intermediate generalized Lagrangian correspondence is admissible. Then
there is a canonical ring isomorphism

(
Hom(L,L), ◦

)
'
(
Hom(L′, L′), ◦

)

which intertwines the identity elements 1L and 1L′ .
Indeed, by assumption there exists a sequence of admissible generalized Lagrangian cor-

respondences Lj connecting L0 = L to LN = L′ as in the proof of Theorem 6.6.1. In each
step two consecutive Lagrangian correspondences in the sequence Lj = (. . . , L−, L+, . . .)
are replaced by their embedded, monotone composition in Lj±1 = (. . . , L− ◦ L+, . . .). The-
orem 5.0.3 provides isomorphisms Ψj : HF (Lj , Lj) → HF (Lj±1, Lj±1) by shrinking the
strip between L− and L+. Theorem 5.4.1 applies to the corresponding strips in the pair
of pants surface and the quilted cap surface of Definition 6.7.1 (c) and (d) and shows that
the isomorphisms Ψj intertwine the ring structures and identity morphisms. The full ring
isomorphism is given by a composition of these isomorphisms or their inverses.

Next, consider a triple of symplectic manifolds Ma,Mb,Mc satisfying (M1-2) with the
same monotonicity constant τ , equipped with Maslov covers LagN (M(·)) → M(·) (with

the same N) and background classes b(·) ∈ H2(M(·),Z2). We denote by Don#(Ma,Mb) ×
Don#(Mb,Mc) the product category. That is, objects are pairs (Lab , Lbc) of objects of
Don#(Ma,Mb) and Don#(Mb,Mc). Morphisms are pairs (f, g) with f ∈ Hom(Lab , L

′
ab), g ∈
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Hom(Lbc, L
′
bc). Composition is given by

(f, g) ◦ (f ′, g′) := (−1)|f
′||g|(f ◦ f ′, g ◦ g′)

for f ∈ Hom(Lab, L
′
ab), f

′ ∈ Hom(L′
ab, L

′′
ab), g ∈ Hom(Lbc, L

′
bc), g

′ ∈ Hom(L′
bc, L

′′
bc).

Definition 6.7.4. We define a composition functor

(72) # : Don#(Ma,Mb) × Don#(Mb,Mc) → Don#(Ma,Mc).

(a) On the level of objects # is defined by concatenation:

Obj(Don#(Ma,Mb)) × Obj(Don#(Mb,Mc)) → Obj(Don#(Ma,Mc))

(Lab, Lbc) 7→ Lab#Lbc,

where

(Lab01, . . . , L
ab
(r−1)r)#(Lbc01, . . . , L

bc
(r′−1)r′) := (Lab01, . . . , L

ab
(r−1)r, L

bc
01, . . . , L

bc
(r′−1)r′).

(b) On the level of morphisms, # is defined for Lab , L
′
ab ∈ Obj(Don#(Ma,Mb)) and

Lbc, L
′
bc ∈ Obj(Don#(Mb,Mc)) by

Hom(Lab, L
′
ab) × Hom(Lbc, L

′
bc) → Hom(Lab#Lbc, L

′
ab#L

′
bc)

(f, g) 7→ f#g := ΦP (f ⊗ g),

where ΦP is the relative invariant associated to the quilted pair of pants P , where now
every seam connects one of the incoming cylindrical ends to the outgoing cylindrical
end, as in Figure 35.

Mb

L′
abLbcL′

bc
Lab

=

⊗

⊗

Mb

Mc

Ma

L′
bc Lbc

L′
ab Lab

Mc Ma

Figure 35. Composition functor on Donaldson categories of correspondences

The composition axiom for the functor # follows from the gluing formula (34) ap-
plied to the two degenerations of the five-holed sphere shown in Figure 36: For all f ∈
Hom(Lab, L

′
ab), f

′ ∈ Hom(L′
ab, L

′′
ab), g ∈ Hom(Lbc, L

′
bc), g

′ ∈ Hom(L′
bc, L

′′
bc) we obtain

#
(
(f, g) ◦ (f ′, g′)

)
= (−1)|f

′||g|(f ◦ f ′)#(g ◦ g′) = (f#g) ◦ (f ′#g′).

The identity axiom for the concatenation functor, 1Lab
#1Lbc

= 1Lab#Lbc
, follows similarly

from the gluing formula (34) applied to the degenerations shown in Figure 37.

Remark 6.7.5. The construction of functors associated to Lagrangian correspondences in
Section 6.5 has an obvious extension (71) for generalized Lagrangian correspondences.
For Lab ∈ Don#(Ma,Mb) the functor Φ(Lab) : Don#(Ma) → Don#(Mb) acts on objects
L ∈ Obj(Don#(Ma)) by concatenation Φ(Lab) = L#Lab, and on morphisms Φ(Lab) :
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f ′ f

gg′

L′′
ab

L′′
bc Lbc

LabL′
ab

L′
bc

Mc

Ma

Mb

f ′ f

gg′

L′′
ab

L′′
bc Lbc

LabL′
ab

L′
bc

Mc

Ma

Mb=

Figure 36. Composition axiom for the concatenation functor

Mc

Lab

Lbc

Ma

Mb Lab#Lbc

Mc

Ma

=

1Lab
#1Lbc

= 1Lab#Lbc

Figure 37. Identity axiom for the concatenation functor

HF (L,L′) → HF (L#Lab, L
′#Lab) is defined by composition Φ(L01) ◦ . . . ◦ Φ(L(r−1)r) of

the functors associated to the simple Lagrangian correspondences (L01, . . . , L(r−1)r) = Lab.
Alternatively, the map Φ(Lab) on morphisms can be defined directly by the relative invariant
in Figure 26, see Remark 6.5.4. Using the first definition, we have a tautological equality
of functors

(73) Φ(Lab) ◦ Φ(Lbc) = Φ(Lab#Lbc)

for any two objects Lab ∈ Don#(Ma,Mb) and Lbc ∈ Don#(Mb,Mc).

6.8. Natural transformations. Let Ma and Mb be as in the previous section and let
Lab, L

′
ab be objects in Don#(Ma,Mb).

Definition 6.8.1. Given a morphism T ∈ Hom(Lab , L
′
ab) we define a natural transformation

ΦT : Φ(Lab) → Φ(L′
ab)

as follows: To any object L in Don#(Ma) we assign the morphism

ΦT (L) ∈ Hom(Φ(Lab)(L),Φ(L′
ab)(L))

given by the relative invariant associated to the surface in Figure 38, which is independent
of the ordering of the patches. (Note that the end where T is inserted is cylindrical in the
sense that the strip-like ends glue together to a cylindrical end.)
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Figure 38. Natural transformation associated to a Floer cohomology class:
General case and an example, where L consists of a single Lagrangian L0,
Lab consists of a single Lagrangian L02, and L′

ab consists of a pair (L01, L12).

To see that ΦT is a natural transformation of functors Φ(Lab) → Φ(L′
ab) we must show

that for any two objects L,L′ in Don#(Ma) and any morphism f ∈ Hom(L,L′) we have

(74) Φ(Lab)(f) ◦ ΦT (L′) = (−1)|T ||f |ΦT (L) ◦ Φ(L′
ab)(f).

This identity follows from (34) applied the gluing shown in Figure 39.

Ma

Mb

L′

L

L′
ab

Lab

T

=

Ma

Mb

L′

L

L′
ab

Lab

T

Figure 39. Natural transformation axiom

Proposition 6.8.2. The maps Lab 7→ Φ(Lab) and T 7→ ΦT define a functor

Don#(Ma,Mb) → Fun(Don#(Ma),Don#(Mb)).

Proof. We apply (34) to the gluings in Figure 40 to deduce the composition axiom

ΦT (L) ◦ ΦT ′(L) = ΦT◦T ′(L)

for all T ∈ Hom(Lab, L
′
ab), T

′ ∈ Hom(L′
ab, L

′′
ab), and L ∈ Obj(Don#(Ma)). The identity

axiom
Φ1Lab

(L) = 1Φ(Lab)(L)

for T = 1Lab
∈ Hom(Lab, Lab) and L ∈ Obj(Don#(Ma)) follows from (34) applied to the

gluing in Figure 41. �
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T

T ′

Ma

Mb

L

L′′
ab

L′
ab

Lab

=
Ma

Mb

L

L′′
ab

Lab
L′
ab

T

T ′

Figure 40. Composition axiom for natural transformations

= 1Φ(Lab)(L)Lab Mb

Ma
L

Figure 41. Identity axiom for natural transformations

Remark 6.8.3. In this remark we discuss the special case of the diagonal ∆ ⊂ M− ×M ,
which gives rise to the so-called open-closed maps in 2D TQFT. By [32] there is a ring
isomorphism between the Floer cohomology of the diagonal HF (∆,∆) and the quantum
cohomology HF (Id). Our construction gives for any element α ∈ HF (∆,∆) ' HF (Id) an
automorphism of the identity functor Φ(∆) (more precisely, of the shift functor Φ(∆) ' ΨM

in case w2(M) 6= 0). In particular, we obtain elements Φα(L) ∈ HF ((L,∆), (L,∆)) '
HF (L,L) for each admissible Lagrangian submanifold L ⊂M . (Here HF ((L,∆), (L,∆)) '
HF (L,L) is a ring isomorphism by Remark 6.7.3 .) Proposition 6.8.2 gives

Φα◦β(L) = Φα(L) ◦ Φβ(L).

That is, the closed-open map HF (Id) → HF (L,L) is a ring homomorphism. The closed-
open maps in Floer theory are discussed in more detail in Albers [2, Theorem 3.1]. More
relations of this type, in the general setting of open-closed TQFT, are discussed in [27].

For any pair of Lagrangians L0, L1 ⊂M , combining the ring homomorphism HF (Id) →
HF (Lk, Lk) with the composition HF (Lk, Lk)×HF (L0, L1) → HF (L0, L1) gives a module
structure on HF (L0, L1) over HF (Id). The module structure is independent of k = 0, 1,
by the natural transformation axiom (74) with L = L′ = ∆. It is equal to the module
structure induced by the isomorphism HF (L0 × L1,∆) → HF (L0, L1) of [46].

Note that ifHF (Id) → HF (L,L) is a surjection andHF (Id) is semisimple thenHF (L,L)
is again semisimple, and in particular nilpotent free.
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Figure 42. Isomorphism of composition and concatenation

Next, we show that embedded composition of Lagrangian correspondences gives rise to
isomorphic objects in the Donaldson-Fukaya category. For simplicity we restrict to the
case of simple Lagrangian correspondences, i.e. sequences of length 1. The statement and
argument for the general case is analogous.

Theorem 6.8.4. Let L01 ∈ Obj(Don#(M0,M1)) and L12 ∈ Obj(Don#(M1,M2)) be ad-
missible Lagrangian correspondences. Suppose that L01 ×M1 L12 → M−

0 ×M2 embeds to

a smooth, admissible Lagrangian correspondence L02 := L01 ◦ L12 ∈ Obj(Don#(M0,M2)).
Then ∆M0#L02, L02#∆M2, and L01#L12 are all isomorphic in Don#(M0,M2).

Remark 6.8.5. If in Theorem 6.8.4 we moreover assume w2(M0) = 0 or w2(M2) = 0, then
we in fact have an isomorphism between L01#L12 and L01◦L12, by Proposition 6.8.6 below.

Proof. By Theorem 5.0.3, Hom(L01#L12,∆M0#L02) resp. Hom(∆M0#L02, L01#L12) is iso-
morphic to Hom(∆M0#L02,∆M0#L02); let φ resp. ψ denote the inverse image of the identity
1∆M0

#L02 . To establish the isomorphism L01#L12 ' ∆M0#L02 we show that

ψ ◦ φ = 1∆M0
#L02 , φ ◦ ψ = 1L01#L12

for the composition by the pair of pants products. These are special cases of Theorem 5.4.1
applied to the degenerations shown in Figure 42. The isomorphism L01#L12 ' L02#∆M2

is proven in the same way. �

Proposition 6.8.6. Suppose that M0 satisfies w2(M0) = 0. Then the diagonal ∆M0 ∈
Don#(M0,M0) is an identity of the composition # up to isomorphism. That is, for every
generalized Lagrangian L ∈ Obj(Don#(M0,M1)) the objects ∆M0#L and L are isomor-
phic in Don#(M0,M1), and for every generalized Lagrangian L ∈ Obj(Don#(M1,M0)) the
objects L#∆M0 and L are isomorphic in Don#(M1,M0).

Proof. By Theorem 5.0.3, both Hom(∆M0#L,L) and Hom(L,∆M0#L) are isomorphic to
Hom(L,L); let φ resp. ψ denote the inverse image of the identity 1L. Then the identities
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Figure 43. Isomorphism of ∆M0#L and L

φ ◦ ψ = 1L and φ ◦ ψ = 1∆M0
#L follow from Theorem 5.4.1 applied to the degenerations

shown in Figure 43. (Alternatively, as mentioned in Section 6.6.2, one could glue the strips
instead of shrinking them.) This proves ∆M0#L ' L. The isomorphism L#∆M0 ' L is
proven in the same way. �

Corollary 6.8.7. Under the assumptions of Theorem 6.8.4 the functors ΨM0 ◦Φ(L01◦L12),
Φ(L01 ◦L12) ◦ΨM2 , and Φ(L01) ◦Φ(L12) are all isomorphic in the category of functors from
Don#(M0) to Don#(M2).

Proof. From Theorem 6.8.4 and (73) we obtain isomorphisms between Φ(∆M0#L02) =
Φ(∆M0) ◦ Φ(L02), Φ(L02#∆M2) = Φ(L02) ◦ Φ(∆M2), and Φ(L01#L12) = Φ(L01) ◦ Φ(L12).
By Proposition 6.6.6 the functors Φ(∆Mk

) are isomorphic to the shift functors ΨMk
. Since

isomorphisms commute with composition of functors, this proves the corollary. �

6.9. Weinstein-Floer 2-category. We can rephrase Theorem 5.0.3 and summarize the
constructions of this chapter, using the language of 2-categories.

Definition 6.9.1. A 2-category C consists of the following data:

(a) A class of objects Obj(C).
(b) For each pair of objects X,Y ∈ Obj(C), a small category Hom(X,Y ).
(c) For each triple of objects X,Y,Z ∈ Obj(C), a composition functor

◦ : Hom(X,Y ) × Hom(Y,Z) → Hom(X,Z).

(d) For every X ∈ Obj(C) an identity functor 1X ∈ Hom(X,X).

These data should satisfy the following axioms:
(Identity): For all X,Y ∈ Obj(C) and f ∈ Hom(X,Y )

1X ◦ f = f, f ◦ 1Y = f.
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(Associativity): For all composable morphisms f, g, h

f ◦ (g ◦ h) = (f ◦ g) ◦ h.
Objects resp. morphisms in Hom(X,Y ) are called 1-morphisms resp. 2-morphisms. We

say that C has weak identities if equality in the identity axiom is replaced by 2-isomorphism.
The basic example of a 2-category is Cat, whose objects are categories, 1-morphisms are

functors, and 2-morphisms are natural transformations.

Definition 6.9.2. A 2-functor F : C1 → C2 between 2-categories C1 and C2 consists of

(a) a map F : Obj(C1) → Obj(C2),
(b) for each pair X,Y ∈ Obj(C1), a functor

F(X,Y ) : Hom(X,Y ) → Hom(F(X),F(Y )),

respecting composition and identities.

In the following we restrict ourselves to symplectic manifolds that are spin, i.e. w2(M) =
0. Their advantage is that the shift functor ΨM : Don#(M, b) → Don#(M, b) of Definition
6.6.4 is trivial and the diagonal ∆M ⊂ M− ×M is an object of the category of correspon-
dences Don#(M,M) from (M, b) to itself. We moreover drop the Maslov cover from the
data, thus working with ungraded Floer cohomology groups.

Definition 6.9.3. Fix a constant τ ≥ 0. We define the Weinstein-Floer 2-category Floer#
τ

as follows:

(a) Objects are symplectic manifolds (M,ω) that satisfy (M1-2) with monotonicity
constant τ and w2(M) = 0, and that are equipped with a background class b ∈
H2(M,Z2).

(b) The morphism categories of Floer# are the Donaldson categories of Lagrangian
correspondences, Hom(M0,M1) := Don#(M0,M1); without grading.

(c) Composition is defined by the functor (72),

# : Don#(M0,M1) × Don#(M1,M2) → Don#(M0,M2).

(d) The diagonal defines a weak identity ∆M ∈ Don#(M,M).

The associativity axiom is immediate on the level of objects: For any triple L01 ∈
Obj(Don#(M0,M1)), L12 ∈ Obj(Don#(M1,M2)), L23 ∈ Obj(Don#(M2,M3)) we have
(L01#L12)#L23 = L01#(L12#L23). On the level of morphisms we apply (34) to the glu-
ings indicated by dashed lines in Figure 44 to prove that (f#g)#h = f#(g#h) for all
f ∈ Hom(L01, L

′
01), g ∈ Hom(L12, L

′
12), h ∈ Hom(L23, L

′
23). The weak identity axiom

follows from Proposition 6.8.6. Hence Floer# is a 2-category with weak identities.

Remark 6.9.4. Floer#
τ is independent, up to 2-isomorphism of 2-categories, of the choices

of perturbation data and strip widths, as in Remarks 6.1.5, 6.4.5, and Proposition 4.3.1.

Theorem 6.8.4 implies that the definition of composition in the Weinstein-Floer 2-category
Floer#

τ agrees with the geometric definition, in the case that geometric composition is
smooth, embedded, and monotone.

Theorem 6.9.5. The map M0 7→ Don#(M0) and the functors

Don#(M0,M1) → Fun(Don#(M0),Don#(M1))

as in Proposition 6.8.2 define a categorification 2-functor Floer#
τ → Cat for every τ ≥ 0.
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Figure 44. Associativity of the concatenation functor

Proof. Compatibility with the composition follows from the identity (73). The weak identi-
ties ∆M ∈ Hom(M,M) are mapped to weak identities Φ(∆) ' 1Don#(M) by Corollary 6.6.6.

Here the shift functor ΨM is the identity since w2(M) = 0. �

Remark 6.9.6. (a) For any genuinely monotone symplectic manifold (i.e. with τ > 0)
we can achieve τ = 1 by rescaling. It thus suffices to consider the exact Weinstein-

Floer 2-category Floer#
0 and the monotone Weinstein-Floer 2-category Floer#

1 . Note
however that we cannot incorporate Lagrangian correspondences between monotone
symplectic manifolds with different monotonicity constants. This is due to bubbling
effects which are true obstructions in our present setup. We expect that the A∞-
setup, incorporating all bubbling effects, has better behavior.

(b) One can define an analogous graded Weinstein-Floer 2-category Floer#
N,τ for any

τ ≥ 0 and integer N , whose objects are monotone symplectic manifolds with the
additional structure of a Maslov cover LagN (M) →M . Its 1-morphisms are graded
generalized Lagrangian correspondences, and its 2-morphism spaces are the graded
Floer cohomology groups.

Remark 6.9.7. (a) One can define a strong identity 1M ∈ Hom(M,M) by allowing the
empty sequence 1M := ∅ as a generalized Lagrangian correspondence. The various
constructions in this Section extend to the case of empty sequences by allowing
cylindrical ends as in Remark 4.3.2.

(b) In the case w2(M) 6= 0, the diagonal is not an automorphism but a morphism
∆M ∈ Hom((M, b), (M, b − w2(M))), see Remark 6.6.5. Hence

L#∆M ∈ Hom((M1, b1), (M, b − w2(M))), L ∈ Hom((M1, b1), (M, b))

lie in different morphism spaces that are not related by a simple shift in the back-
ground class. However, the categorification functor in Theorem 6.9.5 generalizes
directly to this setup as follows. The functor maps the special Floer#

τ 1-morphisms
∆M ∈ Don#((M, b), (M, b−w2(M)) to Cat 1-morphisms that are isomorphic to the
shift functors ΨM ∈ Fun(Don#(M, b),Don#(M, b− w2(M))).

(c) One can make the diagonal a strong identity by modding out by the equivalence rela-
tion discussed in Section 2.1. Let Brane#

τ denote the 2-category whose objects and 1-

morphisms are those of Floer#
τ , modulo the equivalence relation L01#L12 ∼ L01◦L12
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for embedded compositions, as in Section 2.1, and whose 2-morphisms are defined as
follows. Given a pair [L01], [L

′
01] of 1-morphisms from M0 to M1, define the space of

2-morphisms Hom([L01], [L
′
01]) by Hom([L01], [L

′
01]) = HF (L01, L

′
01) for some choice

of representatives L01, L
′
01. Define composition by concatenation #, as in (72). The

equivalence classes of the diagonal [∆M ] define true identities in case w2(M) = 0.
Our main result, Theorem 5.0.3, implies that Brane#

τ is independent of the choice
of representatives up to 2-isomorphism of 2-categories. Theorem 6.8.4 implies that
the categorification 2-functor of Theorem 6.9.5 induces a 2-functor Brane#

τ → Cat
to the 2-category of categories Cat.

Remark 6.9.8. (a) We continue the comparison with quantization in Remark 2.1.5. The
category Hörm# of closed manifolds and sequences of Fourier integral operators
admits a quantization functor to R-families of Hilbert spaces. On the level of objects,
the functor is given by mapping a manifold Q to the family H s(Q) of distributions
of Sobolev class s ∈ R on Q. On the level of morphisms, the functor is given by
mapping a sequence of Fourier integral operators from Q to Q′ of total degree d to
the operator Hs(Q) → Hs−d(Q′) given by composition. It would be interesting to
know whether some of the other properties of quantization extend to Fukaya-Floer
categorification. For instance, in most quantization schemes, quantization commutes
with products, that is, the quantum Hilbert space for a product of two phase spaces is
the tensor product of the quantum Hilbert spaces for the factors. The corresponding
property for categorifications

Don#(M1 ×M2)
?
= Don#(M1) × Don#(M2)

is certainly false, except in trivial cases. However, it seems possible that an appro-
priate version of this axiom holds for Fukaya categories in good situations. Similarly,
for a free G-action on a manifold Q one has quantization commutes with reduction,
which says that the quantum Hilbert space for a quotient is the space of invariant
vectors in the quantum Hilbert space with G-action, see [10],[9]. The results of this
paper construct a functor

Φ(µ−1(0)) : Don#(M) → Don#(M//G)

for a monotone or exact Hamiltonian G-space M , arising from the Lagrangian cor-
respondence µ−1(0)) ↪→M− ×M//G, see Section 2. Can one characterize its image
in terms of invariants, i.e., does categorification commute with reduction

Don#(M//G))
?∼= Don#(M)G

hold? Even better would be a categorification scheme with some relationship to
quantization, as in Khovanov’s work [16].

(b) The 2-category Floer# has certain similarities with 2-categories of motives in alge-
braic geometry. It would be interesting to know if homological mirror symmetry
extends to the level of correspondences, as an equivalence of “derived 2-categories”.

(c) Donaldson-Fukaya categories of cotangent bundles are related to the derived cate-
gories of constructible sheaves in Nadler-Zaslow [28]. It is natural to conjecture that
the relationship described in that paper can be extended to correspondences and
their conormal bundles to give an isomorphism of 2-categories.
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7. Derived Floer theory

In this section we describe a framework in which the assumption (L3) of minimal Maslov
number at least three can be removed. Namely, even if the Floer differential ∂ does not
square to zero, the image DF (L0, L1) of (CF (L0, L1), ∂) in the derived category of matrix
factorizations is independent of all choices up to isomorphism. In our application to SU(r)
knot Floer cohomology in [45], the invariant associated to a trivalent graph will be an object
in such a derived category, and the language is chosen to make it match up with that in
Khovanov-Rozansky [18]. Even in the case that the differentials have vanishing square,
working in the derived category has certain advantages. For example, it makes duals and
tensor products work the way they should. We emphasize that the version of the derived
category needed here is not something deep, but essentially only a question of language.
We also emphasize that the derived category construction discussed here is separate from
the derived category construction applied by Kontsevich to Fukaya’s A∞ category.

7.1. Matrix factorizations. We define categories of matrix factorizations as follows, see
e.g. [31, p.17].16

Definition 7.1.1. For any w ∈ Z, let Fact(w) denote the category of factorizations of w Id.

(a) The objects of Fact(w) consist of pairs (C, ∂), where
(i) C is a Z2-graded free abelian group C = C0 ⊕ C1;
(ii) ∂ is a group homomorphism ∂ : C• → C•+1, satisfying ∂2 = w Id.

(b) For any pair of objects C,C ′, the space of morphisms HomFact(C,C
′) is the space of

grading preserving maps f : C• → (C ′)• such that f∂ = ∂ ′f .

Given an object (C, ∂) ∈ Obj(Fact(w)), there exists a dual object (C, ∂)∨ = (C∨, ∂∨),
where C∨ = Hom(C0,Z) ⊕ Hom(C1,Z) and ∂∨ is the dual of ∂. Similarly for a morphism
f : (C0, ∂0) → (C1, ∂1) we obtain a dual morphism f∨ : (C1, ∂1)∨ → (C0, ∂0)∨. Thus we
obtain a contravariant dualization functor

Fact(w) → Fact(w), (C, ∂) 7→ (C, ∂)∨.

Similarly, the graded tensor product defines a covariant functor

Fact(w0) × Fact(w1) → Fact(w0 + w1),
(
(C0, ∂0), (C1, ∂1)

)
7→ (C0, ∂0) ⊗ (C1, ∂1).

For any matrix factorization (C, ∂) let H((C, ∂) ⊗Z Zw) denote the cohomology of the
differential obtained from ∂ by tensoring with Zw: ∂ ⊗Z Zw : C ⊗Z Zw → C ⊗Z Zw. Any
morphism in Fact(w) defines a homomorphism of the corresponding cohomology groups,
and so we have a cohomology with coefficients functor to the category Ab of Z2-graded
abelian groups,

(75) Fact(w) → Ab, (C, ∂) 7→ H((C, ∂) ⊗Z Zw).

Definition 7.1.2. (a) A morphism f : C → C is called null-homotopic if there exists a
map h : C• → C•−1 such that f = h∂ + ∂h.

(b) The derived category of matrix factorizations D Fact(w) is the category with the
same objects as Fact(w), and morphisms given by the quotient of Hom(Fact(w)) by
null-homotopic morphisms.

(c) The trivial object in D Fact(w) is the trivial complex C 0 = C1 = {0} equipped with
the trivial differential ∂. (Note that ∂2 = w Id, for any w.)

16The assumption that C0, C1 are free avoids the more complicated localization procedure used in e.g.
Hartshorne [12].
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Remark 7.1.3. (a) D Fact(w) is naturally a triangulated category, with distinguished
“exact” triangles given by the mapping cone construction: Given a morphism of
matrix factorizations f : (C0, ∂0) → (C1, ∂1), its mapping cone is the factorization

Cone(f) :=

(
C0[1] ⊕ C1,

(
−∂0 f
0 ∂1

))
.

The exact triangles in D Fact(w) are by definition those isomorphic to triangles

. . . → C0 → C1 → Cone(f) → C0[1] → . . . .

In particular, if C0 f→ C1 → C2 → C0[1] is an exact triangle then C2 is (non-
canonically) isomorphic to the mapping cone on f . The proofs are the same as for
the case w = 0 of complexes, see e.g. [8].

(b) The cohomology with coefficients functor (75) factors through the derived category
to give a functor D Fact(w) → Ab. Any exact triangle in D Fact(w) gives rise to a
long exact sequence of cohomology groups with coefficients in Zw.

7.2. Derived Floer theory for a pair of Lagrangians. The following is a reformulation
of results of Oh [29]. Let D ⊂ C be the unit disk and fix the base point 1 ∈ ∂D. Let (M,ω)
be a compact monotone symplectic manifold and L ⊂M an oriented monotone Lagrangian
submanifold. That is, we assume (M1-2) and (L1-2) with τ > 0 but not (L3). (Note that,
by convention, (L3) is always satisfied in the exact case τ = 0.)

For any J ∈ J (M,ω) and submanifold X ⊂ L, let M2
1(L, J,X) denote the moduli space

of J -holomorphic disks u : (D, ∂D) → (M,L) with Maslov number 2 and one marked point
satisfying u(1) ∈ X, modulo automorphisms of the disk fixing 1 ∈ ∂D.

Proposition 7.2.1. For any ` ∈ L there exists a subset J reg(`) ⊂ J (M,ω) of Baire second
category such that M2

1(L, J, {`}) is a finite set. Any relative spin structure on L induces an
orientation on M2

1(L, J, {`}). Letting ε : M2
1(L, J, {`}) → {±1} denote the map comparing

the given orientation to the canonical orientation of a point, the disk number of L,

w(L) :=
∑

u∈M2
1(L,J,{`})

ε(u),

is independent of J ∈ J reg(`) and ` ∈ L.

Proof. First, we prove that for generic J and a generic point m ∈ M there are no J -
holomorphic spheres with Chern number one passing through m. For any submanifold
X ⊂ M and almost complex structure J ∈ J (M,ω) let M1

1(M,J,X) denote the moduli
space of J -holomorphic maps u : P

1 → X with Chern number one and u(0) ∈ X, modulo
holomorphic automorphisms of P

1 fixing 0 ∈ P
1. Standard arguments using the Sard-Smale

theorem for the universal moduli space show that for J in a subset J reg
sphere(X) ⊂ J (M,ω)

of Baire second category, the moduli space M1
1(M,J,X) is a smooth manifold of dimension

dim(X) − 2. (Because the Chern number is minimal by monotonicity, multiple covers are
impossible, so every map u in the universal moduli space is somewhere injective.) Similarly

a parametrized version shows that for a subset J̃ reg
sphere(X) of homotopies {Jt}t∈[0,1] of Baire

second category, the parametrized moduli space M1
1(M, {Jt}t∈(0,1), X) is a smooth manifold

of dimension dim(X)− 1. In particular, if X is a finite subset of M then both the ordinary
and parametrized moduli spaces are empty.

Next, consider an oriented submanifold X ⊂ L. Another standard argument shows
that for J in a subset J reg

disk(L,X) ⊂ J (M,ω) of Baire second category the moduli space
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M2
1(L, J,X) is a smooth manifold of dimension dim(X). (The results of [22, 21] produce

from a J -holomorphic disk that is not somewhere injective a somewhere injective disk of
lower energy. By monotonicity and minimality of the Maslov number, this is impossible
and so every map u in the universal moduli space is somewhere injective.)

Given a relative spin structure on L one obtains an orientation on M2
1(L, J,X) as fol-

lows. First, let M̃2
1(L, J,X) be the moduli space of parametrized J -holomorphic maps

u : (D, ∂D) → (M,L) with Maslov index 2 and u(1) ∈ X. As explained in [7], [46], the

orientation on X and relative spin structure on L induce an orientation on M̃2
1(L, J,X). To

obtain an orientation on the quotient M2
1(L, J,X) = M̃2

1(L, J,X)/Aut(D, ∂D, 1) it suffices
to define an orientation on the automorphism group. For that purpose we identify D \ {1}
with the half-space H = {z ∈ C, Im(z) ≥ 0}. Then we have Aut(D, ∂D, 1) ∼= (0,∞) × R,
where (0,∞) acts by dilations on H and R acts by translations on H. The standard orien-
tations on the two factors induce the orientation on Aut(H).

Now suppose that X = {`} is a point. Then for J in

J reg(`) := J reg
sphere({`}) ∩ J

reg
disk(L, {`})

the moduli space M2
1(M,L, {`}) is compact. (For if a sphere or disk bubbled off, then

the remaining principal component of the disk would be constant and carry the marked
point, therefore taking values in {`}. In the case of a sphere bubble this is impossible since
M1

1(M,J, {`}) is empty. The case of a disk bubble is excluded since this configuration is
not stable. ) This moduli space is moreover oriented and zero dimensional, hence the sum
in the definition of w(L) is well defined. To see that w(L) is independent of ` we consider
the moduli space M2

1(L, J, γ((0, 1))) for an embedded path γ : [0, 1] → L from γ(0) = `0 to
γ(1) = `1. This is a smooth, oriented 1-dimensional manifold and a compactness argument
similar to the one above shows that M2

1(L, J, γ((0, 1))) gives an oriented cobordism from
M2

1(M,L, `0) to M2
1(M,L, `1), which shows that w(L) is the same for either choice. Simi-

larly, the independence of w(L) from J follows from an oriented cobordism that is provided
by the parametrized moduli space M1

1(L, {Jt}t∈(0,1), {`}) associated to a generic homotopy
from J0 to J1. �

We will now extend the definition of Floer cohomology, using the setup and notation
from Section 3.

Theorem 7.2.2. Let M be a compact monotone symplectic manifold and L0, L1 ⊂ M
oriented, monotone Lagrangian submanifolds (that is (M1-2) and (L1-2) hold with τ > 0).
Suppose that the pair (L0, L1) is monotone in the sense of Definition 3.1.2 and relatively spin
in the sense of [46]. Then, for any H ∈ Ham(L0, L1) and for J in a subset J reg

t (L0, L1;H) ⊂
Jt(M,ω) of Baire second category, the Floer differential ∂ : CF (L0, L1) → CF (L0, L1)
satisfies

∂2 = (w(L0) − w(L1)) Id .

The image DF (L0, L1) of (CF (L0, L1), ∂) in D Fact(w(L0) − w(L1)) is independent of the
choice of H and J , up to isomorphism.

Proof. We sketch the proof, following Oh in the case of Z2 coefficients. For any x± ∈
I(L0, L1), the zero dimensional component M(x−, x+)0 of Floer trajectories is a finite
set, as in Theorem 3.2.2 (b). From part (a) of that theorem we also know that the one-
dimensional component M(x−, x+)1 is smooth, but the “compactness modulo breaking” in
part (c) does not hold in general: Apart from the breaking of trajectories, a sequence of
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Floer trajectories of Maslov index 2 could in the Gromov compactification converge to a
constant trajectory and either a sphere bubble of Chern number one or a disk bubble of
Maslov number two. All other bubbling effects are excluded by monotonicity. Thus failure
of “compactness modulo breaking” occurs only when x− = x+.

In Theorem 3.2.2, the subset J reg
t (L0, L1;H) consists of those time-dependent almost

complex structures J : [0, 1] → J (M,ω) for which all M(x−, x+) are smooth and the
universal moduli spaces of spheres M1

1(M, {J(t)}t∈[0,1], {x}) are empty for all x ∈ I(L0, L1).
This excludes the Gromov convergence to a constant trajectory and a sphere bubble. We
can now restrict to those J ∈ J reg

t (L0, L1;H) such that J(k) ∈ J reg(Lk, {x}) for k = 0, 1
and all x ∈ I(L0, L1). This still defines a subset in J (M,ω) of Baire second category. We
claim that now each one-dimensional moduli space M(x, x)1 of self-connecting trajectories
has a compactification as a one-dimensional manifold with boundary

∂M(x, x)1 ∼=
⋃

y

(
M(x, y)0 ×M(y, x)0

)
∪ M2

1(L
0, J(0), {x})− ∪ M2

1(L
1, J(1), {x})

and that furthermore the orientations on these moduli spaces induced by the relative spin
structures are compatible with the inclusion of the boundary. Here M2

1(L
0, {x})− denotes

the moduli space M2
1(L

0, {x}) with orientation reversed. The proof of the claim uses a glu-
ing theorem of non-transverse type for pseudoholomorphic maps with Lagrangian boundary
conditions, which can be adapted from [26, Chapter 10] as follows: We replace L0 with its
translate under the Hamiltonian flow of H, then I(L0, L1) = L0 t L1 and the Floer tra-
jectories are unperturbed J -holomorphic strips (where J has suffered some Hamiltonian

transformation, too). Pick vk ⊂ M̃2
1(L

k, J(k), {x}), then the gluing construction gives
maps for k = 0, 1

(76) (T,∞) × (−T−1, T−1) −→ M̃2(x, x)

to the moduli space of parametrized Floer trajectories of index 2. This construction iden-
tifies vk with a map vk : H → M on the half space H ∼= D \ {1}; then for (τ, σ) ∈
(T,∞) × (−T−1, T−1) it shifts this map by σ and outside of a half disk of radius 1

2τ
1/2

around 0, interpolates it to the constant solution x outside of the half disk of radius τ 1/2

(using a slowly varying cutoff function in submanifold coordinates of L0 and L1 near x ∈M).

Then it rescales this map by τ to a half-disk of radius τ−1/2 and glues it to the constant
solution on the infinite strip R× [0, 1] on a half disk of radius τ−1/2 around the point (0, k).
The resulting map u : R × [0, 1] → M is an approximate Floer trajectory. An application
of the implicit function theorem gives an exact solution for T sufficiently large.

It remains to examine the effect of the gluing on orientations. The gluing construction can
equivalently be described by viewing the domain (T,∞)×(−T −1, T−1) of the gluing map as
a subset of the automorphism group Aut(D, ∂D, 1) ∼= (0,∞)×R and identifying it with its

image U :=
(
(T,∞) × (−T−1, T−1)

)
· v0 ⊂ M̃2

1(L
k, J, {x}) on v0. The resulting map U →

M̃2(x, x) is simply the parametrized gluing map (with a fixed gluing parameter) on pairs of
disks (after capping off the strip-like ends) and so orientation preserving by the definitions
of [46]. Now the infinitesimal translation action of (−T −1, T−1) on U approximately agrees

under the gluing with the infinitesimal translation action on M̃2(x, x) for k = 0, resp. its
inverse for k = 1. So, after quotienting by the translations the gluing map induces an

embedding (T,∞) → M(x, x)1 = M̃2(x, x)/R for sufficiently large T , and taking the order
of factors into account, we see that this embedding is orientation preserving resp. reversing
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for k = 1 resp. k = 0. Summing over the boundary of the one-dimensional manifold
∂M(x, x)1 thus proves ∂2 − w(L0) Id+w(L1) Id = 0.

The proof that the image of (CF (L0, L1), ∂) in the derived category of matrix factor-
izations is independent of all choices up to isomorphism is essentially the same as that
of Proposition 4.3.1, which produces a pair of chain maps whose compositions are null
homotopic. �

Definition 7.2.3. Let L0, L1 ⊂ M be a pair of Lagrangian submanifolds as in Theo-
rem 7.2.2.

(a) We define the derived Floer factorization DF (L0, L1) to be the image of the Floer
matrix factorization (CF (L0, L1), ∂) in Obj(D Fact(w(L0) − w(L1))).

(b) We define the Floer cohomology with coefficients in Zw, w := w(L0) − w(L1) to be
the image

HF (L0, L1; Zw) := H
(
(CF (L0, L1), ∂) ⊗Z Zw

)
,

of (CF (L0, L1), ∂) under the cohomology with coefficients functor (75).

Remark 7.2.4. (a) In the case w = w(L0)−w(L1) = 0 this definition coincides with the
usual definition of Floer cohomology with Z coefficients in the sense that the functor
taking cohomology with Z coefficients from DFact(0) to the category of finitely
generated Z2-graded abelian groups induces a bijection between isomorphism classes
of objects.

(b) Theorem 7.2.2 and Remark 7.1.3 show that the Floer cohomology HF (L0, L1; Zw)
is independent of all choices up to isomorphism in the category of abelian groups.

(c) The differential for a monotone pair (L,ψ(L)) with any symplectomorphism ψ ∈
Symp(M) always squares to zero, since w(L) = w(ψ(L)) by Proposition 7.2.1.

Remark 7.2.5. One advantage of the derived category is that duals and tensor products
behave as expected. The following identities are immediate from the definitions.

(a) Suppose that (L0, L1) is a monotone, relatively spin pair of compact, oriented La-
grangian submanifolds. Then DF (L0, L1) = DF (L1, L0)∨.

(b) Suppose that (L0
0, L

1
0) and (L0

1, L
1
1) are monotone, relatively spin pairs of compact,

oriented Lagrangian submanifolds in compact, monotone symplectic manifolds M0

and M1. Then DF (L0
0 × L0

1, L
1
0 × L1

1) = DF (L0
0, L

1
0) ⊗DF (L0

1, L
1
1).

In our main result 1.0.1 the assumption (L3) on the minimal Maslov number was needed
only for the definition of the Floer cohomologies. The bijection between the trajectory
spaces for small widths and for the composed Lagrangian correspondence in Theorem 5.0.5
only requires that the minimal Maslov number of the Lagrangians is at least two (which
is automatic in the monotone orientable case). The comparison of orientations in [46] is
also independent of Maslov indices, and the morphisms between Floer theories with strips
of different widths also yield isomorphisms between the derived Floer factorizations. Hence
we have the following generalized version of Theorem 1.0.1. (This also extends further to
general sequences of Lagrangian correspondences as in Theorem 5.0.3.)

Theorem 7.2.6. Let M0,M1,M2 be compact symplectic manifolds satisfying (M1-2) with
the same monotonicity constant τ > 0, let

L0 ⊂M0, L01 ⊂M−
0 ×M1, L12 ⊂M−

1 ×M2, L2 ⊂M−
2

be Lagrangian submanifolds satisfying (L1-2), and assume that the pair (L0×L12, L01×L2)
is monotone and relatively spin. Suppose that L01◦L12 is smooth, embedded into M−

0 ×M2 by
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π02, also satisfies (L1), and the pair (L0×L2, L01 ◦L12) is monotone. Then, with respect to
the induced relative spin structures, there exists a canonical isomorphism in D Fact between
the derived objects DF (L0 × L12, L01 × L2) and DF (L0 × L2, L01 ◦ L12).

7.3. Derived relative invariants. Given a quilted surface S, a collection M of compact,
monotone symplectic manifolds (satisfying (M1-2) with a fixed constant τ > 0) and a
collection L of compact, oriented, monotone Lagrangian boundary conditions that satisfy
(L1-2) and are monotone and relatively spin in the sense of Section 4.1 , one obtains a
derived invariant

DΦS :
⊗

e∈E+(S)

DF (Le) →
⊗

e∈E−(S)

DF (Le),

where the derived objects are the images of the corresponding chain groups in the derived
category of matrix factorizations. The proof is exactly the same as in the Floer cohomology
case, since in fact we used the assumption on the minimal Maslov number only to make the
Floer cohomology groups well-defined.

Example 7.3.1. (a) Given an admissible Lagrangian L ⊂ M one obtains an identity
morphism IL : Z → DF (L,L), where Z is the trivial complex in degree 0. The
differential for CF (L,L) automatically squares to zero by Remark 7.2.4, so after
passing to cohomology the identity morphism IL induces the identity object 1L ∈
HF (L,L).

(b) Given an admissible triple L0, L1, L2 of Lagrangians one obtains a derived composi-
tion morphism in D Fact

Dµ2 : DF (L0, L1) ×DF (L1, L2) → DF (L0, L2).

The derived composition morphism is also associative.

One has a derived analog of Theorem 5.4.1, by the same arguments. The statement is
left to the reader.

7.4. Donaldson-Fukaya category of Lagrangians. Let (M,ω) be a compact, mono-
tone symplectic manifold, equipped with a Maslov cover LagN (M) → Lag(M) and back-
ground class b ∈ H2(M,Z2). One can define a category-like structure Don(M) by taking
as objects the set of Lagrangian branes as in Definition 6.1.4, but without the assumption
on the minimal Maslov number. To any pair of objects (L0, L1), the morphism object
Hom(L0, L1) := DF (L0, L1) is an object in D Fact. Composition is given by Dµ2, which is
a morphism in D Fact.

Don(M) might be called a category enriched in the derived category of matrix factor-
izations, except that the morphism object is not a set; or a category object in the derived
category of matrix factorizations, except that only the morphisms are objects in this cate-
gory. The results of Section 6 hold with appropriate modifications of categories to categories
enriched in DFact. In particular, one can define an enriched 2-category whose objects are
compact monotone symplectic manifolds, morphisms are Lagrangian correspondences, and
for each pair of 1-morphisms we have as 2-morphisms an object of D Fact. The standard
representation becomes a 2-functor to the 2-category whose objects are categories enriched
in D Fact, 1-morphisms are functors, and 2-morphisms are natural transformations.

The matrix factorizations here appear in [7] in the following guise. A weak A∞ category
consists of a collection of objects and composition maps µd, d ≥ 0, satisfying the A∞

associativity relations modified to include an operation µ0 which assigns to any object X
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an element µ0(X) ∈ Hom(X,X). The first A∞ relation is (µ1)
2 = µ2(µ0 ⊗ 1 − 1 ⊗ µ0).

Special features of the Fukaya category in the monotone case are that µ2(µ0 ⊗ 1 − 1 ⊗ µ0)
is a multiple of the identity morphism for any object X, and a homotopy of perturbation
data produces a chain homotopy for µ1, due to lack of disk bubbling.
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systèmes hamiltoniens. Bull. Soc. Math. France, 115(3):361–390, 1987.
[44] K. Wehrheim and C.T. Woodward. Exact triangle for fibered Dehn twists. in preparation.
[45] K. Wehrheim and C.T. Woodward. Floer field theory. in preparation.
[46] K. Wehrheim and C.T. Woodward. Orientations for pseudoholomorphic quilts. in preparation.
[47] Katrin Wehrheim. Energy quantization and mean value inequalities for nonlinear boundary value prob-

lems. J. Eur. Math. Soc. (JEMS), 7(3):305–318, 2005.
[48] A. Weinstein. The symplectic “category”. In Differential geometric methods in mathematical physics,

volume 905 of Lecture Notes in Math., pages 45–51. Springer, Berlin, 1982.
[49] A. Weinstein. Lectures on Symplectic Manifolds, volume 29 of CBMS Regional Conf. Series in Math.

Amer. Math. Soc., 1983. third printing.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.

E-mail address: katrin@math.mit.edu

Department of Mathematics, Rutgers University, Piscataway, NJ 08854. E-mail address:
ctw@math.rutgers.edu


